Existing Internet of Things(IoT)systems that rely on Amazon Web Services(AWS)often encounter inefficiencies in data retrieval and high operational costs,especially when using DynamoDB for large-scale sensor data.These...Existing Internet of Things(IoT)systems that rely on Amazon Web Services(AWS)often encounter inefficiencies in data retrieval and high operational costs,especially when using DynamoDB for large-scale sensor data.These limitations hinder the scalability and responsiveness of applications such as remote energy monitoring systems.This research focuses on designing and developing an Arduino-based IoT system aimed at optimizing data transmission costs by concentrating on these services.The proposed method employs AWS Lambda functions with Amazon Relational Database Service(RDS)to facilitate the transmission of data collected from temperature and humidity sensors to the RDS database.In contrast,the conventional method utilizes AmazonDynamoDB for storing the same sensor data.Data were collected from 01 April 2022,to 26 August 2022,in Tokyo,Japan,focusing on temperature and relative humiditywitha resolutionof oneminute.The efficiency of the twomethods—conventional andproposed—was assessed in terms of both time and cost metrics,with a particular focus on data retrieval.The conventional method exhibited linear time complexity,leading to longer data retrieval times as the dataset grew,mainly due to DynamoDB’s pagination requirements and the parsing of payload data during the reading process.In contrast,the proposed method significantly reduced retrieval times for larger datasets by parsing payload data before writing it to the RDS database.Cost analysis revealed a savings of$1.56 per month with the adoption of the proposed approach for a 20-gigabyte database.展开更多
文摘Existing Internet of Things(IoT)systems that rely on Amazon Web Services(AWS)often encounter inefficiencies in data retrieval and high operational costs,especially when using DynamoDB for large-scale sensor data.These limitations hinder the scalability and responsiveness of applications such as remote energy monitoring systems.This research focuses on designing and developing an Arduino-based IoT system aimed at optimizing data transmission costs by concentrating on these services.The proposed method employs AWS Lambda functions with Amazon Relational Database Service(RDS)to facilitate the transmission of data collected from temperature and humidity sensors to the RDS database.In contrast,the conventional method utilizes AmazonDynamoDB for storing the same sensor data.Data were collected from 01 April 2022,to 26 August 2022,in Tokyo,Japan,focusing on temperature and relative humiditywitha resolutionof oneminute.The efficiency of the twomethods—conventional andproposed—was assessed in terms of both time and cost metrics,with a particular focus on data retrieval.The conventional method exhibited linear time complexity,leading to longer data retrieval times as the dataset grew,mainly due to DynamoDB’s pagination requirements and the parsing of payload data during the reading process.In contrast,the proposed method significantly reduced retrieval times for larger datasets by parsing payload data before writing it to the RDS database.Cost analysis revealed a savings of$1.56 per month with the adoption of the proposed approach for a 20-gigabyte database.