With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge...With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ...The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用...为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用改进的蜣螂优化算法对工作流调度问题进行求解。改进的算法使用HEFT(heterogeneous earliest finish time)算法对蜣螂种群进行初始化,降低了原始算法中随机性带来的影响。同时引入了镜面反射和反向学习思想,提高了算法的搜索性能。实验结果表明,该算法相比于其他一些传统的调度算法在完工时间与成本方面都有一定的性能提升。展开更多
Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concern...Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.展开更多
In 2021,12 fraudulent cases were identified in the Chinese carbon market.As a critical component of this emerging market,China’s carbon-credit scheme in the automotive sector faces several shortcomings,including info...In 2021,12 fraudulent cases were identified in the Chinese carbon market.As a critical component of this emerging market,China’s carbon-credit scheme in the automotive sector faces several shortcomings,including informational opacity and operational inefficiency,which affect market functionality and fairness.This study develops an information system that integrates blockchain technology and the Internet of Things to manage a carbon-credit scheme.Specifically,we attached carbon credits to each vehicle with radio frequency identification electronic tags and a chained data structure to ensure the traceability and reliability of information flow.We use the distributed ledger technology and establish five distinct types of smart contracts for decentralized operations to ensure that all procedures of the Chinese carboncredit scheme are standardized and under public scrutiny.The proposed infrastructure has the potential to significantly enhance the transparency and efficiency of China’s carbon-credit schemes.展开更多
With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,...With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,it is very important to improve the efficiency of decision-making by quickly obtaining accurate meteorological observation data.However,the traditional method of meteorological data collection and transmission has a large delay in data acquisition due to the conversion of public network and internal network,which affects the timeliness of emergency decision-making.This paper proposes a solution based on the Internet of things platform combined with MQTT protocol,which aims to realize the efficient and reliable real-time collection and transmission of meteorological data,shorten the data acquisition time,improve the emergency response speed,and meet the needs of temporary observation.展开更多
The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these netwo...The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these networks,as shared channels are used to transmit packets.In this paper,a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT.Initially,every device works collaboratively to form a distributed network.In this model,if a device is deployed outside the coverage area of the nearest server,it communicates indirectly through the neighboring devices.For this purpose,every device collects data from the respective neighboring devices,such as hop count,average packet transmission delay,criticality factor,link reliability,and RSSI value,etc.These parameters are used to find an optimal route from the source to the destination.Secondly,the proposed approach has enabled devices to learn from the environment and adjust the optimal route-finding formula accordingly.Moreover,these devices and server modules must ensure that every packet is transmitted securely,which is possible only if it is encrypted with an encryption algorithm.For this purpose,a decision tree-enabled device-to-server authentication algorithm is presented where every device and server must take part in the offline phase.Simulation results have verified that the proposed distributed communication approach has the potential to ensure the integrity and confidentiality of data during transmission.Moreover,the proposed approach has outperformed the existing approaches in terms of communication cost,processing overhead,end-to-end delay,packet loss ratio,and throughput.Finally,the proposed approach is adoptable in different networking infrastructures.展开更多
The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based ...The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based on the Internet of Health Things(IoHTs).However,data privacy and security,data management,and scalability present challenges to widespread adoption.This paper presents a comprehensive literature review that examines the authentication mechanisms utilized within IoHT,highlighting their critical roles in ensuring secure data exchange and patient privacy.This includes various authentication technologies and strategies,such as biometric and multifactor authentication,as well as the influence of emerging technologies like blockchain,fog computing,and Artificial Intelligence(AI).The findings indicate that emerging technologies offer hope for the future of IoHT security,promising to address key challenges such as scalability,integrity,privacy and other security requirements.With this systematic review,healthcare providers,decision makers,scientists and researchers are empowered to confidently evaluate the applicability of IoT in healthcare,shaping the future of this field.展开更多
To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solu...To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.展开更多
Internet of Things(IoT)technology has brought about significant new changes to residents’lives,prompting changes in management models across various industries and promoting the overall intelligence of urban construc...Internet of Things(IoT)technology has brought about significant new changes to residents’lives,prompting changes in management models across various industries and promoting the overall intelligence of urban construction.Especially in the context of continuous technological development,information sensor devices can be effectively utilized to connect multiple dimensions in urban construction,enhancing the intelligence level of cities in China.This paper mainly elaborates on the application significance of IoT technology in smart cities and proposes corresponding measures from aspects such as smart transportation systems,intelligent public utility management,urban safety and monitoring,environmental monitoring,and sustainability,providing references for relevant personnel.展开更多
The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These in...The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.展开更多
The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Syst...The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Systems(IDS)often fail to meet the privacy requirements and scalability demands of large-scale IoT ecosystems.To address these challenges,we propose an innovative privacy-preserving approach leveraging Federated Learning(FL)for distributed intrusion detection.Our model eliminates the need for aggregating sensitive data on a central server by training locally on IoT devices and sharing only encrypted model updates,ensuring enhanced privacy and scalability without compromising detection accuracy.Key innovations of this research include the integration of advanced deep learning techniques for real-time threat detection with minimal latency and a novel model to fortify the system’s resilience against diverse cyber-attacks such as Distributed Denial of Service(DDoS)and malware injections.Our evaluation on three benchmark IoT datasets demonstrates significant improvements:achieving 92.78%accuracy on NSL-KDD,91.47%on BoT-IoT,and 92.05%on UNSW-NB15.The precision,recall,and F1-scores for all datasets consistently exceed 91%.Furthermore,the communication overhead was reduced to 85 MB for NSL-KDD,105 MB for BoT-IoT,and 95 MB for UNSW-NB15—substantially lower than traditional centralized IDS approaches.This study contributes to the domain by presenting a scalable,secure,and privacy-preserving solution tailored to the unique characteristics of IoT environments.The proposed framework is adaptable to dynamic and heterogeneous settings,with potential applications extending to other privacy-sensitive domains.Future work will focus on enhancing the system’s efficiency and addressing emerging challenges such as model poisoning attacks in federated environments.展开更多
With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connectio...With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connection of various physical devices,sensors,and machines,it realizes information intercommunication and remote control among devices,significantly enhancing the convenience and efficiency of work and life.However,the rapid development of the IoT has also brought serious security problems.IoT devices have limited resources and a complex network environment,making them one of the important targets of network intrusion attacks.Therefore,from the perspective of deep learning,this paper deeply analyzes the characteristics and key points of IoT intrusion detection,summarizes the application advantages of deep learning in IoT intrusion detection,and proposes application strategies of typical deep learning models in IoT intrusion detection so as to improve the security of the IoT architecture and guarantee people’s convenient lives.展开更多
The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent require...The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent requirements for ultra-low latency,high reliability,and robust privacy present significant challenges.Conventional centralized Federated Learning(FL)architectures struggle with latency and privacy constraints,while fully distributed FL(DFL)faces scalability and non-IID data issues as client populations expand and datasets become increasingly heterogeneous.To address these limitations,we propose a Clustered Distributed Federated Learning(CDFL)architecture tailored for a 6G-enabled TIoT environment.Clients are grouped into clusters based on data similarity and/or geographical proximity,enabling local intra-cluster aggregation before inter-cluster model sharing.This hierarchical,peer-to-peer approach reduces communication overhead,mitigates non-IID effects,and eliminates single points of failure.By offloading aggregation to the network edge and leveraging dynamic clustering,CDFL enhances both computational and communication efficiency.Extensive analysis and simulation demonstrate that CDFL outperforms both centralized FL and DFL as the number of clients grows.Specifically,CDFL demonstrates up to a 30%reduction in training time under highly heterogeneous data distributions,indicating faster convergence.It also reduces communication overhead by approximately 40%compared to DFL.These improvements and enhanced network performance metrics highlight CDFL’s effectiveness for practical TIoT deployments.These results validate CDFL as a scalable,privacy-preserving solution for next-generation TIoT applications.展开更多
基金supported by the Shandong Province Science and Technology Project(2023TSGC0509,2022TSGC2234)Qingdao Science and Technology Plan Project(23-1-5-yqpy-2-qy)Open Topic Grants of Anhui Province Key Laboratory of Intelligent Building&Building Energy Saving,Anhui Jianzhu University(IBES2024KF08).
文摘With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
文摘The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
文摘为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用改进的蜣螂优化算法对工作流调度问题进行求解。改进的算法使用HEFT(heterogeneous earliest finish time)算法对蜣螂种群进行初始化,降低了原始算法中随机性带来的影响。同时引入了镜面反射和反向学习思想,提高了算法的搜索性能。实验结果表明,该算法相比于其他一些传统的调度算法在完工时间与成本方面都有一定的性能提升。
基金funded by the Yunnan Key Laboratory of Blockchain Application Technology(202105AG070005,202305AG340008)&YNB202301,NSFC(Grant Nos.72293583,72293580,62476007,62176273,62271234)the Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2024-1-06)+2 种基金the Project of Science and Technology Major Project of Yunnan Province(202302AF080006)Open Foundation of State Key Laboratory of Public Big Data(Guizhou University)under Grant No.PBD2022-16Double First-Class Project for Collaborative Innovation Achievements inDisciplines Construction in Heilongjiang Province under Grant No.GXCG2022-054.
文摘Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.
基金Financial support from the National Natural Science Foundation of China(under grants numbers:72271249 and 72432005)from Guangdong Basic and Applied Basic Research Foundation(under grant number:2023B1515040001)are highly appreciated.
文摘In 2021,12 fraudulent cases were identified in the Chinese carbon market.As a critical component of this emerging market,China’s carbon-credit scheme in the automotive sector faces several shortcomings,including informational opacity and operational inefficiency,which affect market functionality and fairness.This study develops an information system that integrates blockchain technology and the Internet of Things to manage a carbon-credit scheme.Specifically,we attached carbon credits to each vehicle with radio frequency identification electronic tags and a chained data structure to ensure the traceability and reliability of information flow.We use the distributed ledger technology and establish five distinct types of smart contracts for decentralized operations to ensure that all procedures of the Chinese carboncredit scheme are standardized and under public scrutiny.The proposed infrastructure has the potential to significantly enhance the transparency and efficiency of China’s carbon-credit schemes.
基金Supported by Wuzhou Science and Technology Planning Project(202202047).
文摘With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,it is very important to improve the efficiency of decision-making by quickly obtaining accurate meteorological observation data.However,the traditional method of meteorological data collection and transmission has a large delay in data acquisition due to the conversion of public network and internal network,which affects the timeliness of emergency decision-making.This paper proposes a solution based on the Internet of things platform combined with MQTT protocol,which aims to realize the efficient and reliable real-time collection and transmission of meteorological data,shorten the data acquisition time,improve the emergency response speed,and meet the needs of temporary observation.
基金supported by the Princess Nourah bint Abdulrahman University Riyadh,Saudi Arabia,through Project number(PNURSP2025R235).
文摘The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these networks,as shared channels are used to transmit packets.In this paper,a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT.Initially,every device works collaboratively to form a distributed network.In this model,if a device is deployed outside the coverage area of the nearest server,it communicates indirectly through the neighboring devices.For this purpose,every device collects data from the respective neighboring devices,such as hop count,average packet transmission delay,criticality factor,link reliability,and RSSI value,etc.These parameters are used to find an optimal route from the source to the destination.Secondly,the proposed approach has enabled devices to learn from the environment and adjust the optimal route-finding formula accordingly.Moreover,these devices and server modules must ensure that every packet is transmitted securely,which is possible only if it is encrypted with an encryption algorithm.For this purpose,a decision tree-enabled device-to-server authentication algorithm is presented where every device and server must take part in the offline phase.Simulation results have verified that the proposed distributed communication approach has the potential to ensure the integrity and confidentiality of data during transmission.Moreover,the proposed approach has outperformed the existing approaches in terms of communication cost,processing overhead,end-to-end delay,packet loss ratio,and throughput.Finally,the proposed approach is adoptable in different networking infrastructures.
文摘The digital revolution era has impacted various domains,including healthcare,where digital technology enables access to and control of medical information,remote patient monitoring,and enhanced clinical support based on the Internet of Health Things(IoHTs).However,data privacy and security,data management,and scalability present challenges to widespread adoption.This paper presents a comprehensive literature review that examines the authentication mechanisms utilized within IoHT,highlighting their critical roles in ensuring secure data exchange and patient privacy.This includes various authentication technologies and strategies,such as biometric and multifactor authentication,as well as the influence of emerging technologies like blockchain,fog computing,and Artificial Intelligence(AI).The findings indicate that emerging technologies offer hope for the future of IoHT security,promising to address key challenges such as scalability,integrity,privacy and other security requirements.With this systematic review,healthcare providers,decision makers,scientists and researchers are empowered to confidently evaluate the applicability of IoT in healthcare,shaping the future of this field.
基金supported in part by the International Science and Technology Cooperation Program of Liaoning Province(Grant No.2022JH2/10700012)the Applied Basic Research Program of Liaoning Province(Grant No.2023JH2/101300188,2022JH2/101300269)+2 种基金the Foundation of Yunnan Key Laboratory of Service Computing(Grant No.YNSC23118)the Basic Research Project of Liaoning Educational Department(Grant No.JYTMS20230011)supported by the Fundamental Research Funds for the Provincial Universities of Liaoning(No.LJ212410150030).
文摘To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.
文摘Internet of Things(IoT)technology has brought about significant new changes to residents’lives,prompting changes in management models across various industries and promoting the overall intelligence of urban construction.Especially in the context of continuous technological development,information sensor devices can be effectively utilized to connect multiple dimensions in urban construction,enhancing the intelligence level of cities in China.This paper mainly elaborates on the application significance of IoT technology in smart cities and proposes corresponding measures from aspects such as smart transportation systems,intelligent public utility management,urban safety and monitoring,environmental monitoring,and sustainability,providing references for relevant personnel.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University via Grant No.(QU-APC-2025).
文摘The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.
基金supported and funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘The rapid proliferation of Internet of Things(IoT)devices has heightened security concerns,making intrusion detection a pivotal challenge in safeguarding these networks.Traditional centralized Intrusion Detection Systems(IDS)often fail to meet the privacy requirements and scalability demands of large-scale IoT ecosystems.To address these challenges,we propose an innovative privacy-preserving approach leveraging Federated Learning(FL)for distributed intrusion detection.Our model eliminates the need for aggregating sensitive data on a central server by training locally on IoT devices and sharing only encrypted model updates,ensuring enhanced privacy and scalability without compromising detection accuracy.Key innovations of this research include the integration of advanced deep learning techniques for real-time threat detection with minimal latency and a novel model to fortify the system’s resilience against diverse cyber-attacks such as Distributed Denial of Service(DDoS)and malware injections.Our evaluation on three benchmark IoT datasets demonstrates significant improvements:achieving 92.78%accuracy on NSL-KDD,91.47%on BoT-IoT,and 92.05%on UNSW-NB15.The precision,recall,and F1-scores for all datasets consistently exceed 91%.Furthermore,the communication overhead was reduced to 85 MB for NSL-KDD,105 MB for BoT-IoT,and 95 MB for UNSW-NB15—substantially lower than traditional centralized IDS approaches.This study contributes to the domain by presenting a scalable,secure,and privacy-preserving solution tailored to the unique characteristics of IoT environments.The proposed framework is adaptable to dynamic and heterogeneous settings,with potential applications extending to other privacy-sensitive domains.Future work will focus on enhancing the system’s efficiency and addressing emerging challenges such as model poisoning attacks in federated environments.
基金the research result of the 2022 Municipal Education Commission Science and Technology Research Plan Project“Research on the Technology of Detecting Double-Surface Cracks in Concrete Lining of Highway Tunnels Based on Image Blast”(KJQN02202403)the first batch of school-level classroom teaching reform projects“Principles Applications of Embedded Systems”(23JG2166)the school-level reform research project“Continuous Results-Oriented Practice Research Based on BOPPPS Teaching Model-Taking the‘Programming Fundamentals’Course as an Example”(22JG332).
文摘With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connection of various physical devices,sensors,and machines,it realizes information intercommunication and remote control among devices,significantly enhancing the convenience and efficiency of work and life.However,the rapid development of the IoT has also brought serious security problems.IoT devices have limited resources and a complex network environment,making them one of the important targets of network intrusion attacks.Therefore,from the perspective of deep learning,this paper deeply analyzes the characteristics and key points of IoT intrusion detection,summarizes the application advantages of deep learning in IoT intrusion detection,and proposes application strategies of typical deep learning models in IoT intrusion detection so as to improve the security of the IoT architecture and guarantee people’s convenient lives.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.GPIP:2040-611-2024。
文摘The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent requirements for ultra-low latency,high reliability,and robust privacy present significant challenges.Conventional centralized Federated Learning(FL)architectures struggle with latency and privacy constraints,while fully distributed FL(DFL)faces scalability and non-IID data issues as client populations expand and datasets become increasingly heterogeneous.To address these limitations,we propose a Clustered Distributed Federated Learning(CDFL)architecture tailored for a 6G-enabled TIoT environment.Clients are grouped into clusters based on data similarity and/or geographical proximity,enabling local intra-cluster aggregation before inter-cluster model sharing.This hierarchical,peer-to-peer approach reduces communication overhead,mitigates non-IID effects,and eliminates single points of failure.By offloading aggregation to the network edge and leveraging dynamic clustering,CDFL enhances both computational and communication efficiency.Extensive analysis and simulation demonstrate that CDFL outperforms both centralized FL and DFL as the number of clients grows.Specifically,CDFL demonstrates up to a 30%reduction in training time under highly heterogeneous data distributions,indicating faster convergence.It also reduces communication overhead by approximately 40%compared to DFL.These improvements and enhanced network performance metrics highlight CDFL’s effectiveness for practical TIoT deployments.These results validate CDFL as a scalable,privacy-preserving solution for next-generation TIoT applications.