Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanism...Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.展开更多
For a comprehensive experimental evaluation of the material quality, forecast of the properties and parameter change of the bituminous material was made at the time under the impact of external factors, they are subje...For a comprehensive experimental evaluation of the material quality, forecast of the properties and parameter change of the bituminous material was made at the time under the impact of external factors, they are subjected to the necessary tests. In the article the automated set “Tomsk-Asphalt-Test” for determining the elastic modulus of the specimens made of bituminous materials was used in road pavements, maximally close to natural conditions of operation of highways of the Siberian region inRussiaare described. The automated set contains: electromechanical, climate, electronic, PC and software subsystem. The operation principle is a short-time deformation of the asphalt specimens;measurement of physical values: the stress, strain, variation of the size line and temperature of the asphalt pavement material test specimen, converting the measured values into electrical signals, their program processing and visualization. The control of testing and viewing results of measurements is carried out in accordance with the menu software subsystem. The results of calculations: the maximum values of vertical load the difference between the maximum horizontal deformation value and the value measured last after specimen of asphalt material loading for each test cycle, the sum of the differences of the horizontal deformation values of the two sensors and modulus of elasticity.展开更多
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ...Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.展开更多
In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)...In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.展开更多
To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of...To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.展开更多
基金supported by Fundamental Research Funds for the Central Universities(No.lzujbky-2024-05)Innovation Foundation of Provincial Education Department of Gansu(2024B-005)+2 种基金Scientific Department of Gansu(24CXGA083,24CXGA024,JK2024-28,JK2024-32 and 23CXJA0007)Industrial Support Plan Project of Provincial Education Department of Gansu(2025CYZC-003 and CYZC-2024-10)the Hunan Natural Science Foundation Science and Education Joint Fund Project(2022JJ60109).
文摘Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.
文摘For a comprehensive experimental evaluation of the material quality, forecast of the properties and parameter change of the bituminous material was made at the time under the impact of external factors, they are subjected to the necessary tests. In the article the automated set “Tomsk-Asphalt-Test” for determining the elastic modulus of the specimens made of bituminous materials was used in road pavements, maximally close to natural conditions of operation of highways of the Siberian region inRussiaare described. The automated set contains: electromechanical, climate, electronic, PC and software subsystem. The operation principle is a short-time deformation of the asphalt specimens;measurement of physical values: the stress, strain, variation of the size line and temperature of the asphalt pavement material test specimen, converting the measured values into electrical signals, their program processing and visualization. The control of testing and viewing results of measurements is carried out in accordance with the menu software subsystem. The results of calculations: the maximum values of vertical load the difference between the maximum horizontal deformation value and the value measured last after specimen of asphalt material loading for each test cycle, the sum of the differences of the horizontal deformation values of the two sensors and modulus of elasticity.
基金This manuscript is supported by the National Key Research and Development Program of China(Grant No.2021YFB2601000)the National Natural Science Foundation of China(Grant Nos.52278437,52008044)+2 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ40479)the Science and Technology Innovation Program of Hunan Provincial Department of Transportation(Grant No.202236)the Changsha Outstanding Innovative Youth Training Program Project(Grant No.kq2306009).
文摘Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.
基金The National Natural Science Foundation of China(No.51378122)
文摘In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.
基金The National Natural Science Foundation of China(No.51878167)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX23_0300).
文摘To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.