Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent...Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.展开更多
In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support pou...In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support poultry farmers in increasing their production, we developed a solar-powered incubator equipped with a flat-plate collector, requiring no grid electricity. This is a new approach that we want to experiment with because the incubators on the global market operate either with the electricity grid, photovoltaic, gas or oil and not a solar thermal concentrator. This solar concentrator represents the heat source of the device during the day. We plan to look for rocks with high thermal inertia in order to heat them during the day using another flat solar concentrator and then introduce them into the incubator at night to continue the incubation process. In 2022, we conducted a simulation to study temperature variation inside the incubator. In this work, we built a prototype to experimentally evaluate key hydrothermal properties such as air temperature and humidity. Furthermore, we will not introduce rocks into the incubator overnight but will let the system run overnight to see how the hygrothermal properties vary. The findings revealed temperature fluctuations from 25˚C to 65˚C, instead of the desired 36˚C to 38˚C, and humidity levels ranging from 15% to 57%, instead of the target 55% to 75%. Solutions have been proposed to enhance the system’s performance.展开更多
Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at freestream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the con...Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at freestream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibility effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely tO OCCUr.展开更多
In this paper,the visualization of the thermo-hydrodynamic behavior in flat-plate pulsating heat pipe(FP-PHP)with HFE-347 is experimentally investigated.The FP-PHP is vertically placed with filling rate of 20%to 70%an...In this paper,the visualization of the thermo-hydrodynamic behavior in flat-plate pulsating heat pipe(FP-PHP)with HFE-347 is experimentally investigated.The FP-PHP is vertically placed with filling rate of 20%to 70%and heating power of 20 W to 140 W.A high-speed camera is used to record the two-phase flow in the FP-PHP.Four flow pattern types and four flow directions are observed.The flow directions of the two-phase flow inside the FP-PHP with medium filling rate(40%–60%)are the most complex,and the FP-PHP with high filling rate(70%)is most likely to form a directional circulating flow.At high heating power(100 W to 140 W),the flow patterns in FP-PHP with medium(40%–60%)and high filling rate(70%)are dominated by mixed flow.The wall temperature fluctuates greatly at moderate heating power(60 W to 80 W)owing to the uncertainty of the flow direction.The temperature distribution of the FP-PHP is highly affected by the heat transfer intensity of the working fluid under different flow states,so that the state of fluid flow and the thermal performance of FP-PHP can be evaluated through the infrared thermal image of the FP-PHP.展开更多
文摘Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.
文摘In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support poultry farmers in increasing their production, we developed a solar-powered incubator equipped with a flat-plate collector, requiring no grid electricity. This is a new approach that we want to experiment with because the incubators on the global market operate either with the electricity grid, photovoltaic, gas or oil and not a solar thermal concentrator. This solar concentrator represents the heat source of the device during the day. We plan to look for rocks with high thermal inertia in order to heat them during the day using another flat solar concentrator and then introduce them into the incubator at night to continue the incubation process. In 2022, we conducted a simulation to study temperature variation inside the incubator. In this work, we built a prototype to experimentally evaluate key hydrothermal properties such as air temperature and humidity. Furthermore, we will not introduce rocks into the incubator overnight but will let the system run overnight to see how the hygrothermal properties vary. The findings revealed temperature fluctuations from 25˚C to 65˚C, instead of the desired 36˚C to 38˚C, and humidity levels ranging from 15% to 57%, instead of the target 55% to 75%. Solutions have been proposed to enhance the system’s performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos 90205025, 19872069, 170176033, and 10502052, and the Informatization Construction of Knowledge Innovation Projects of Chinese Academy of Sciences under Grant No INF 105-SCE. The authors would like to thank the State Key Laboratory of Scientific and Engineering Computing (LSEC) and Supercomputing Centre of Chinese Academy of Sciences (SCCAS) for providing computer time. The authors would like to thank Professor Zhou Heng and Professor Luo Jisheng of Tianjin University for helpful discussion.
文摘Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at freestream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibility effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely tO OCCUr.
基金financial support provided by National Natural Science Foundation of China(Project No.51506033)Guangxi Natural Science Foundation(Grant No.2017JJA160108)Guangxi Colleges and Universities Program of Innovative Research Team and Outstanding Talent。
文摘In this paper,the visualization of the thermo-hydrodynamic behavior in flat-plate pulsating heat pipe(FP-PHP)with HFE-347 is experimentally investigated.The FP-PHP is vertically placed with filling rate of 20%to 70%and heating power of 20 W to 140 W.A high-speed camera is used to record the two-phase flow in the FP-PHP.Four flow pattern types and four flow directions are observed.The flow directions of the two-phase flow inside the FP-PHP with medium filling rate(40%–60%)are the most complex,and the FP-PHP with high filling rate(70%)is most likely to form a directional circulating flow.At high heating power(100 W to 140 W),the flow patterns in FP-PHP with medium(40%–60%)and high filling rate(70%)are dominated by mixed flow.The wall temperature fluctuates greatly at moderate heating power(60 W to 80 W)owing to the uncertainty of the flow direction.The temperature distribution of the FP-PHP is highly affected by the heat transfer intensity of the working fluid under different flow states,so that the state of fluid flow and the thermal performance of FP-PHP can be evaluated through the infrared thermal image of the FP-PHP.