In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the micr...In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.展开更多
The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (T<sub>opt</sub>). For...The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (T<sub>opt</sub>). For this same magnetic field, the diffusion coeffi-cient of the photogenerated carriers by a monochromatic light in frequency modulation enters into resonance, at the frequency (ω<sub>c</sub>). Under this double resonance in temperature and frequency, the diffusion coefficient is used in the expression of the recombination velocity of the minority charge carriers on the back side of the base of the solar cell (n<sup>+</sup>/p/p<sup>+</sup>), to obtain, by a graphical method, the optimum thickness. A modeling of the results obtained shows a material saving (Si), in the development of the solar cell.展开更多
Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported...Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P 〈 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lin- gual cortex, lateral occipitotemporal gyrus, cuneus, occip- ital lobe, inferior parietal lobe, and temporal lobe (P 〈 0.05, corrected), but was higher in the calcarine gyrus (P 〈 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lat- eral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.展开更多
Zn-Fe coatings on Q235 steel are prepared by pack cementation process at 390 ℃ for 2,4,6,8 and10 h to investigate the effects of the deposition time on the thickness and corrosion behavior of the Zn-Fe coatings.The t...Zn-Fe coatings on Q235 steel are prepared by pack cementation process at 390 ℃ for 2,4,6,8 and10 h to investigate the effects of the deposition time on the thickness and corrosion behavior of the Zn-Fe coatings.The thickness of the coating increases with the increase of the deposition time.The coating is composed of a thick outer layer and a thin inner layer.The formation of the coating depends on the inward diffusion of Zn atoms and the outward diffusion of Fe atoms.The outer layer is composed of Fe11 Zn40 and FeZn10 phases.The corrosion behavior of the Zn-Fe coatings is evaluated by immersion test and polarization test.The results show that the Zn-Fe coatings can effectively prevent the Q235 steel from corrosion.The corrosion resistance of the coating is proportional to the deposition time.展开更多
New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the dop...New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.展开更多
The minority carrier’s recombination velocity at the junction and at the back surface is used for the modeling and determination of the optimum thickness of the base of a silicon solar cell in the static regime, unde...The minority carrier’s recombination velocity at the junction and at the back surface is used for the modeling and determination of the optimum thickness of the base of a silicon solar cell in the static regime, under magnetic field and temperature influence. This study takes into account the Umklapp process and the Lorentz effect on the minority carriers photogenerated in the base.展开更多
Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochem...Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochemical performance. Our work investigates the relation between electrochemical performance and cathode thickness with typical porous carbon materials. We explain the phenomenon that only a modest cathode thickness can have the most adequate electrochemical reaction trend through the aspect of thermodynamics(chemical potential) so that the best electrochemical performance can be obtained.Besides, interlayer can remit the shuttle effect but hinder the lithium ion diffusion process simultaneously. And we verify the effect of interlayer thickness on the shuttle effect and lithium ion diffusion process.展开更多
A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a ca...A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a canonical control form, which is proper for controller synthesis. Analytical solution of the model to describe the open-loop behavior is expressed in terms of the Lambert function. The Lambert function is evaluated from aTaylorexpansion series. Besides, a controller is proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control input. The control law is synthesized employing the feedback linearization technique. Main contributions of this work are the synthesis of the layer thickness controller, and the employment of the process temperature as substitute of the diffusion coefficient as the control input.展开更多
In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding ...In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.展开更多
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t...In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect.展开更多
Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plat...Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.展开更多
The influence of an alternative magnetic field on the diffusion of Al and Mg in AI-Mg diffusion couple is studied. The diffusion zone is composed of two intermediate phases, namelyβ and γ phase. Thickness of each in...The influence of an alternative magnetic field on the diffusion of Al and Mg in AI-Mg diffusion couple is studied. The diffusion zone is composed of two intermediate phases, namelyβ and γ phase. Thickness of each intermediate phase is examined. The results show that the alternative magnetic field increases the thicknesses of βand γ phase zone and the layer growth ofβ and γphase obeys the parabolic rate law. The growth rate of the β and γ phase are increased with the application of the alternative magnetic field. This change is manifested through a change in the frequency factor k0 and not through a change in the activation energy Q. The frequency factor k0 for intermediate phase growth with an alternative magnetic field is 39.95 cm2/s for 7 phase and 2.84×10-4 cm2/s for β phase compared with those without the magnetic field is 22.4 cm2/s for 7 phase and 1.53×10-4 cm2/s for β phase.展开更多
The influence of an alternative magnetic field on the growth of the diffusionlayer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. Theresults show that the alternative magneti...The influence of an alternative magnetic field on the growth of the diffusionlayer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. Theresults show that the alternative magnetic field increases the thickness of the diffusion layer andthe effect increases with the intensity and frequency of the alternative magnetic field increasing. The growth of the diffusion layer obeys the parabolic rate law and the growth rateincreases with the application of the alternative magnetic field. This growth rate change ismanifested through a change in the frequency factor k_0 and not through a change in the activationenergy Q. The frequency factor k_0 for the diffusion layer growth with the alternative magneticfield is 5.03 cm^2/s and the one without the magnetic field is 3.84 cm^2/s.展开更多
electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which ar...electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.展开更多
基金the National Key Basic Research Program of China("973 Program",No.2012CB625100)the National Natural Science Foundation of China(No.51001106&No.51301181)the Doctoral Starting up Foundation of Liaoning Province Science and Technology Agency,China(No.20131118)
文摘In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.
文摘The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (T<sub>opt</sub>). For this same magnetic field, the diffusion coeffi-cient of the photogenerated carriers by a monochromatic light in frequency modulation enters into resonance, at the frequency (ω<sub>c</sub>). Under this double resonance in temperature and frequency, the diffusion coefficient is used in the expression of the recombination velocity of the minority charge carriers on the back side of the base of the solar cell (n<sup>+</sup>/p/p<sup>+</sup>), to obtain, by a graphical method, the optimum thickness. A modeling of the results obtained shows a material saving (Si), in the development of the solar cell.
基金supported by the National Natural Science Foundation of China(30872717)
文摘Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P 〈 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lin- gual cortex, lateral occipitotemporal gyrus, cuneus, occip- ital lobe, inferior parietal lobe, and temporal lobe (P 〈 0.05, corrected), but was higher in the calcarine gyrus (P 〈 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lat- eral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.
基金the National Natural Science Foundation of China(No.51075184)the Natural Science Foundation of Shandong Province(No.ZR2017LEM004)the Fundamental Research Funds for the Central Universities of China(Nos.16CX06020A and18CX02091A)
文摘Zn-Fe coatings on Q235 steel are prepared by pack cementation process at 390 ℃ for 2,4,6,8 and10 h to investigate the effects of the deposition time on the thickness and corrosion behavior of the Zn-Fe coatings.The thickness of the coating increases with the increase of the deposition time.The coating is composed of a thick outer layer and a thin inner layer.The formation of the coating depends on the inward diffusion of Zn atoms and the outward diffusion of Fe atoms.The outer layer is composed of Fe11 Zn40 and FeZn10 phases.The corrosion behavior of the Zn-Fe coatings is evaluated by immersion test and polarization test.The results show that the Zn-Fe coatings can effectively prevent the Q235 steel from corrosion.The corrosion resistance of the coating is proportional to the deposition time.
文摘New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.
文摘The minority carrier’s recombination velocity at the junction and at the back surface is used for the modeling and determination of the optimum thickness of the base of a silicon solar cell in the static regime, under magnetic field and temperature influence. This study takes into account the Umklapp process and the Lorentz effect on the minority carriers photogenerated in the base.
基金supported by the National Key R&D Program of China (2016YFA0200102, 2016YFB0100100, 2014CB932402)the National Natural Science Foundation of China (Nos. 51525206, 51521091, 51372253, U1401243 and 21576159)+4 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015150)the Institute of Metal Research (2015-PY03)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA09010104)Key Research Program of the Chinese Academy of Sciences (Grant no. KGZD-EW-T06)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochemical performance. Our work investigates the relation between electrochemical performance and cathode thickness with typical porous carbon materials. We explain the phenomenon that only a modest cathode thickness can have the most adequate electrochemical reaction trend through the aspect of thermodynamics(chemical potential) so that the best electrochemical performance can be obtained.Besides, interlayer can remit the shuttle effect but hinder the lithium ion diffusion process simultaneously. And we verify the effect of interlayer thickness on the shuttle effect and lithium ion diffusion process.
文摘A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a canonical control form, which is proper for controller synthesis. Analytical solution of the model to describe the open-loop behavior is expressed in terms of the Lambert function. The Lambert function is evaluated from aTaylorexpansion series. Besides, a controller is proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control input. The control law is synthesized employing the feedback linearization technique. Main contributions of this work are the synthesis of the layer thickness controller, and the employment of the process temperature as substitute of the diffusion coefficient as the control input.
基金support rendered through a Major Research Project No. F-31-51/2005(SR)
文摘In many circumstances,dissimilar metals have to be bonded together and the resulting joint interfaces must typically sustain mechanical and/or electrical forces without failure,which is not possible by fusion welding processes.The melting points of magnesium(Mg)and copper(Cu)have a significant difference(nearly 400℃)and this may lead to a large difference in the microstructure and joint performance of Mg-Cu joints.However,diffusion bonding can be used to join these alloys without much difficulty.This work analyses the effect of parameters on diffusion layer thickness,hardness and strength of magnesium-copper dissimilar joints.The experiments were conducted using three-factor,five-level,central composite rotatable design matrix.Empirical relationships were developed to predict diffusion layer thickness,hardness and strength using response surface methodology.It is found that bonding temperature has predominant effect on bond characteristics.Joints fabricated at a bonding temperature of 450℃, bonding pressure of 12 MPa and bonding time of 30 min exhibited maximum shear strength and bonding strength of 66 and 81 MPa, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.52178398,51991394,and 51278424).
文摘In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2002AA334070)
文摘Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.
文摘The influence of an alternative magnetic field on the diffusion of Al and Mg in AI-Mg diffusion couple is studied. The diffusion zone is composed of two intermediate phases, namelyβ and γ phase. Thickness of each intermediate phase is examined. The results show that the alternative magnetic field increases the thicknesses of βand γ phase zone and the layer growth ofβ and γphase obeys the parabolic rate law. The growth rate of the β and γ phase are increased with the application of the alternative magnetic field. This change is manifested through a change in the frequency factor k0 and not through a change in the activation energy Q. The frequency factor k0 for intermediate phase growth with an alternative magnetic field is 39.95 cm2/s for 7 phase and 2.84×10-4 cm2/s for β phase compared with those without the magnetic field is 22.4 cm2/s for 7 phase and 1.53×10-4 cm2/s for β phase.
基金This work was financially supported by the National 863 Foundation of China (No. 2001AA332030)the National Key Basic Research Program (973) (No. G1999064905)
文摘The influence of an alternative magnetic field on the growth of the diffusionlayer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. Theresults show that the alternative magnetic field increases the thickness of the diffusion layer andthe effect increases with the intensity and frequency of the alternative magnetic field increasing. The growth of the diffusion layer obeys the parabolic rate law and the growth rateincreases with the application of the alternative magnetic field. This growth rate change ismanifested through a change in the frequency factor k_0 and not through a change in the activationenergy Q. The frequency factor k_0 for the diffusion layer growth with the alternative magneticfield is 5.03 cm^2/s and the one without the magnetic field is 3.84 cm^2/s.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372313, U1562105, and 11611130019)the Chinese Academy of Sciences (CAS) through CAS Interdisciplinary Innovation Team Project, the CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program (Grant No. XDB22040401)
文摘electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.