期刊文献+
共找到5,290篇文章
< 1 2 250 >
每页显示 20 50 100
Tunable Thermo-Responsive Shape Memory Materials Enabled by Poly(ε-caprolactone)-Poly(2-vinyl)ethylene Glycol Copolymers via Facile Thiol-Ene Photo-Crosslink
1
作者 Ming-Hang Wang Fan Yang Yong-Jian Zhang 《Chinese Journal of Polymer Science》 2025年第2期278-288,共11页
Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this ... Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry. 展开更多
关键词 shape memory polymers POLYCAPROLACTONE Thiol-ene photo-crosslink Controlled crosslinking density Tunable response temperature
原文传递
Ultra-high temperature shape memory in high-Hf content NiTiHf alloys 被引量:1
2
作者 A.V.Shuitcev Q.Z.Li +2 位作者 M.G.Khomutov L Li Y.X.Tong 《Journal of Materials Science & Technology》 2025年第6期124-127,共4页
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t... The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7]. 展开更多
关键词 shape memory alloys smas shape memory alloys ultra high temperature reversible thermoelastic martensitic transformation space industry nitihf alloys
原文传递
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
3
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics:A Review
4
作者 Junhui Hua Junyuan Xiong +2 位作者 Bo Xu Chong Wang Qingyuan Wang 《Computers, Materials & Continua》 2025年第10期65-88,共24页
Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerfu... Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerful numerical simulation tool,can efficiently resolve the microstructural evolution,multi-field coupling effects,and fracture behavior of SMAs and SMCs.This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs,covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture.Subsequently,it systematically examines the phase field simulations of fracture behaviors in SMAs and SMCs,with particular emphasis on how crystallographic orientation,grain size,and grain boundary properties influence the crack propagation.Additionally,the interplay between martensite transformation and fracture mechanisms is analyzed to provide deeper insights into the material responses under mechanical loading.Finally,the review explores future prospects and emerging trends in phase field simulations of SMA and SMC fracture behavior,along with potential advancements in the fracture phase field method itself,including multi-physics coupling and enhanced computational efficiency for large-scale simulations. 展开更多
关键词 Phase field fracture behavior shape memory alloy shape memory ceramic
在线阅读 下载PDF
Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature
5
作者 Kartikey Shahi Velmurugan Ramachandran +1 位作者 Ranjith Mohan Boomurugan Ramachandran 《Journal of Polymer Materials》 2025年第2期477-496,共20页
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho... A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions. 展开更多
关键词 shape memory polymer composite glass fiber composite shape fixity shape recovery thermomechanical cycle
在线阅读 下载PDF
Effect of Annealing on the Shape Memory Effect and Mechanical Properties of Laser Powder Bed Fusion NiTi Alloy
6
作者 Yunting Guo Mengqi Liu +8 位作者 Chaorui Jiang Ruiyao Liu Jundong Zhang Pengwei Sha Hang Li Zhenglei Yu Zhihui Zhang Zezhou Xu Luquan Ren 《Additive Manufacturing Frontiers》 2025年第1期125-135,共11页
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e... The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys. 展开更多
关键词 ANNEALING LPBF-NiTi shape memory effect Mechanical properties PRECIPITATES
在线阅读 下载PDF
Intermittent healing for alleviating the functional fatigue and restoration of the elastocaloric effect in superelastic NiTi shape memory alloy
7
作者 Junyu Chen Fei Liu +1 位作者 Gang Fang Upadrasta Ramamurty 《Journal of Materials Science & Technology》 2025年第24期289-303,共15页
Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material ava... Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material available for the stress-induced transformation and,thus,lower the elastocaloric effect that originates from the stress-induced latent heat variations.In this study,the individual contributions of the micromechanisms responsible for the functional fatigue in superelastic NiTi at different maximum tensile stress(σ_(max))are critically examined.Results show that the elastocaloric effect degrades significantly with cycling,and the saturated degraded value increases with σ_(max);the steady-state adiabatic temperature change is unexpectedly non-proportional to σ_(max).An overheating treatment(‘healing’)after mechanical fatigue reverts the retained martensite into austenite,making it available for subsequent transformation and restoring the elastocaloric effect significantly.Such a restoration increases exponentially with σ_(max).Consequently,the steady-state elastocaloric effect of the healed NiTi is proportional to σ_(max) and can reach more than twice that of NiTi without healing.The work sheds light on the physical origins of elastocaloric degradation of superelastic NiTi and also provides a feasible method for ameliorating functional fatigue. 展开更多
关键词 shape memory alloys FATIGUE Transformation-induced plasticity Martensitic transformation Elastocaloric effect
原文传递
Design,Analysis and Prototype Testing of a Non-explosive Self-deploying Wing Actuated by NiTi Shape Memory Alloy Wires
8
作者 Bin Huang Jun Wang +2 位作者 Xiaojun Gu Jihong Zhu Weihong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第3期229-242,共14页
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me... This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints. 展开更多
关键词 Folding wing shape memory alloy Cruise missile Explosion overload ACTUATION
在线阅读 下载PDF
An artificial neural network-based data-driven constitutive model of shape memory alloys
9
作者 Xingyu Zhou Ziang Liu +1 位作者 Chao Yu Guozheng Kang 《Acta Mechanica Sinica》 2025年第8期108-125,共18页
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio... The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models. 展开更多
关键词 shape memory alloys Constitutive model DATA-DRIVEN Artificial neural network
原文传递
Smart reconfigurable metadevices made of shape memory alloy metamaterials
10
作者 Shiqiang Zhao Yuancheng Fan +6 位作者 Ruisheng Yang Zhehao Ye Fuli Zhang Chen Wang Weijia Luo Yongzheng Wen Ji Zhou 《Opto-Electronic Advances》 2025年第2期6-14,共9页
Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimen... Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.Tunable extraordinary optical transmission like(EOT-like)phenomena have been achieved in the microwave regime using shape memory alloy(SMA).The strongly localized fields generated by designed metadevices,combined with the intense interference of incident waves,enhance transmission through subwavelength apertures.Leveraging the temperature-responsive properties of SMA,the morphology of the metadevice can be recontructed,thereby modifying its response to electromagnetic waves.The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior,achieving a maximum transmission enhancement factor of 126.Furthermore,the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated.The proposed SMA-based metamaterials offer advantages in terms of miniaturization,easy processing,and high design flexibility.They may have potential applications in microwave devices requiring temperature control,such as sensing and monitoring. 展开更多
关键词 METAMATERIALS extraordinary optical transmission shape memory alloy temperature tunability
在线阅读 下载PDF
Progress in Bionic Deformable Wing of Aircraft Driven by Shape Memory Alloy
11
作者 Xiaomin Jia Tong Chang +3 位作者 Shihui Zhou Xiaolong Zhang Shupeng Wang Zhihui Zhang 《Journal of Bionic Engineering》 2025年第5期2236-2260,共25页
Birds have developed near-perfect structures and functionality over millions of years of natural evolution.To improve the efficiency of fixed-wing vehicles in different environments,researchers have developed deformab... Birds have developed near-perfect structures and functionality over millions of years of natural evolution.To improve the efficiency of fixed-wing vehicles in different environments,researchers have developed deformable wings inspired by the wing structures of birds.Shape Memory Alloy(SMA)is applied as a smart material to the deformable wing.Compared with other drive methods,SMA actuators have the advantages of high drive capacity and a simple structure for driving wing deformation.According to the shape memory effect,SMA actuators are classified as single-range and dual-range actuators.The wing structure designed for each SMA drive is unique.By comparing and analyzing the structures of airfoils,airfoils with similar drive forms and deformation structures are put together for review and discussion.The deformable wings are categorized into out-of-face deformation,in-face deformation,airfoil curvature deformation,and combined deformation with multiple degrees of freedom based on the structure and location of the wing that produces the deformation.An overview of the deformed wing is introduced by telling the bionic theory of seagulls.The principles of deformation of the wing,the mechanics of the SMA actuator mechanism,and the aerodynamic characteristics of the deformable wing are presented.The structure and working principle of SMA actuators for each type of deformable wing are explained in detail.Methods and approaches to study the deformability of deformable wings are analyzed and summarized.This work provides comprehensive insights and perspectives for future studies of SMA-driven deformable airfoils. 展开更多
关键词 Deformable wing shape memory alloy Deformation structure Smart material
在线阅读 下载PDF
Body Temperature Programmable Shape Memory Thermoplastic Rubber
12
作者 Taoxi Wang Zhuo Liu +5 位作者 Fu Jian Xing Shen Chen Wang Huwei Bian Tao Jiang Wei Min Huang 《Journal of Polymer Materials》 2025年第1期81-94,共14页
This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubbe... This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications.We hybridized commercially available thermoplastic rubber(TPR)used in the footwear industry with un-crosslinked polycaprolactone(PCL)to create two samples,namely TP6040 and TP7030.The shape memory behavior,elasticity,and thermo-mechanical response of these rubbers were systematically investigated.The experimental results demonstrated outstanding shape memory performance,with both samples achieving shape fixity ratios(Rf)and shape recovery ratios(R_(r))exceeding 94%.TP6040 exhibited a fitting time of 80 s at body temperature(37℃),indicating a rapid response for shape fixing.The materials also showed good elasticity before and after programming,which is crucial for comfort fitting.These findings suggest that the developed shape memory thermoplastic rubber has potential applications in personalized comfort fitting products,offering advantages over traditional customization techniques in terms of efficiency and cost-effectiveness. 展开更多
关键词 Thermoplastic rubber POLYCAPROLACTONE shape memory polymers body temperature programmable comfort fitting
在线阅读 下载PDF
Shape Memory Polymers with Self-folding Deformation and Multi-stimulus Response
13
作者 Lan Zhang Wei Zhang +2 位作者 Qiushi Wang Suqian Ma Xia Yan 《Journal of Bionic Engineering》 2025年第1期238-250,共13页
Shape Memory Polymers(SMPs)need to be given a temporary shape in advance to realize the shape memory process,but the manual shaping process is cumbersome and has low precision.Here,we propose a universal applicable me... Shape Memory Polymers(SMPs)need to be given a temporary shape in advance to realize the shape memory process,but the manual shaping process is cumbersome and has low precision.Here,we propose a universal applicable method for 4D printing self-folding SMPs by pre-stretching extruded filaments during 3D printing,the temporary shape of the SMPs were designed and fixed during 3D printing.Prepared samples can automatically perform shape memory process under stimulation without manual temporary shape programming process.Furthermore,using carbon ink as a photothermal conversion agent enables the 4D printing SMPs to have thermal and light response characteristics.In addition,some bionic applications of self-folding SMPs were demonstrated,such as self-morphing grasper,DNA double helix structures,programmable sequential switching mimosa,self-folding box and human hand.The combination of SMP and 3D printing fully takes advantage of 4D printing technology,and the self-folding SMPs show great potential applications in the fields of tissue engineering scaffold,self-folding robots,self-assembly system and so on. 展开更多
关键词 3D printing 4D printing shape memory Multi-stimulus response Self-folding
在线阅读 下载PDF
Dual Cross-linked Eucommia Ulmoides Gum with Reprocessibility,Shape Memory Capability and Broadband Sound Absorption at Low Frequency
14
作者 Qing-Gang Ni Rui Mi +4 位作者 Biao Ou-Yang Jian-Hua Wu Peng Kong You-Ji Li Xiao-Chun Peng 《Chinese Journal of Polymer Science》 2025年第10期1875-1884,共10页
An inverse vulcanized polymer,SZIM combining Zn2+-imidazole coordination bonds and polysulfide bonds was synthesized and incorporated into bio-based Eucommia ulmoides gum (EUG) to generate EUG-SZIM-xs.The residual cry... An inverse vulcanized polymer,SZIM combining Zn2+-imidazole coordination bonds and polysulfide bonds was synthesized and incorporated into bio-based Eucommia ulmoides gum (EUG) to generate EUG-SZIM-xs.The residual crystallinity of the EUG matrix synergistically interacted with the dual cross-linking networks to establish reversible deformation domains,providing EUG-SZIM-xs with quick shape memory capability at moderate temperatures.The damping properties were also investigated,and EUG-SZIM-xs displayed high tanδ values (>0.3) when the SZIM dosage was higher than 5.5 phr,which showed a positive correlation with SZIM concentration.Such good damping performance endowed the EUG-SZIM-xs with broadband low-frequency sound absorption.In addition,the dual cross-linking networks endowed the materials with reprocessability under different catalytic systems,and the 1,8-diazobicyclic[5.4.0]undeca-7-ene (DBU)-catalyzed samples exhibited better mechanical properties than EUG-SZIM-xs. 展开更多
关键词 Eucommia ulmoides gum Inverse vulcanization shape memory capability Reprocessibility Sound absorption
原文传递
Incommensurate modulated structure and its influence on the martensitic transformation temperature span of single phase multielement Ni-Cu-Co-Mn-Ga two-way shape memory single crystals
15
作者 Qijia Yu Yang Liu +5 位作者 Chen Si Wenjia Wang Jiaxi Meng Jingmin Wang Jinghua Liu Chengbao Jiang 《Journal of Materials Science & Technology》 2025年第5期230-240,共11页
Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence ... Significant two-way shape memory effect(TWSME)was achieved in single crystals of single-phase multielement Ni42-x Cu8 Cox Mn37 Ga13(8≤x≤12)alloys by performing thermomechanical training.However,anomalous dependence of the martensitic transformation temperature span on Co content was observed.Before training,quite a narrow temperature span of the martensitic transformation,nearly independent of the Co content,was observed in all single crystals.After training the temperature span was still narrow for 8≤x≤10.9 but was obviously expanded for 10.9<x≤12.High-resolution transmission electron microscopy revealed that at the atomic scale,there exists incommensurate modulated structure in the single phase single crystals,as evidenced by nonperiodic satellite spots in the selected area electronic diffraction patterns.Moreover,the modulated wave vector of the satellite spots was increased by higher Co contents.Combining first principal calculations it was considered that the incommensurate modulated structure originates from the formation of Co-Co pairs.After training arrays of ordered dislocations with the same Burgers vector were introduced for 8≤x≤10.9 but the network of dislocations was formed for 10.9<x≤12.Based on analysis of transmission electron microscopy,geometric phase,thermodynamics,and Landau theory,it was considered that the austenite/martensite phase interface was pinned by the network of dislocations,expanding the temperature span of the martensitic transformation.This work supplies new insights for understanding the microstructure and martensitic transformation of Ni-Mn-Ga-based alloys. 展开更多
关键词 Martensitic transformation Incommensurate modulated structure Temperature span DISLOCATION Two-way shape memory effect
原文传递
Application of Shape Memory Alloy Torsion Tube in Folding Wingtip Mechanism of Morphing Aircraft
16
作者 LAI Zhenyang WANG Chen +2 位作者 YANG Yang WAN Liliang SHEN Xing 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期78-90,共13页
Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent ... Morphing aircraft are designed to adaptively adjust their shape for changing flight missions,which enables them to improve their flight performance significantly for future applications.The folding wingtips represent a key research aspect for morphing aircraft,since they can lead to potential improvements in flight range,maneuverability,load alleviation and airport compatibility.This paper proposes a hinge mechanism design for folding wingtips based on the shape memory alloy torsion tube,aiming to achieve successful folding using the actuation effect of the shape memory alloy.The proposed design employs a shape memory alloy torsion tube as the actuator for the active folding of the wingtip,which is motivated by the characteristics of the tube,enabling a simplified structure for the integration with high energy density.Through numerical simulation and testing of the folding wingtip structure,the concept is verified,which shows its potential as an actuator for folding wingtips. 展开更多
关键词 morphing aircraft folding wingtip shape memory alloy torsion tubes
在线阅读 下载PDF
In-situ synthesis of NiTi shape memory alloys with tunable chemical composition and thermomechanical response by dual-wire-feed electron beam directed energy deposition
17
作者 Ze Pu Dong Du +3 位作者 Changyong Chen Zibin Chen Kangcheung Chan Baohua Chang 《Journal of Materials Science & Technology》 2025年第13期209-225,共17页
In this study,we demonstrate the direct in-situ synthesis of NiTi alloys with tunable chemical com-position(Ni/Ti atomic ratio)and corresponding thermomechanical response.This synthesis is achieved by regulating the f... In this study,we demonstrate the direct in-situ synthesis of NiTi alloys with tunable chemical com-position(Ni/Ti atomic ratio)and corresponding thermomechanical response.This synthesis is achieved by regulating the feeding speed ratio of pure Ni and Ti wires during the additive manufacturing pro-cess based on dual-wire-feed electron beam directed energy deposition(EB-DED)technology.Under ap-propriate process conditions,the resulting NiTi alloys exhibit a controllable evolution around the near-equiatomic composition and display a typical columnar grain morphology characteristic of additively manufactured NiTi alloys.With an increase in Ni content(shifting from Ti-rich to Ni-rich),the second phase particles present in the samples change from Ti-rich phase(Ti_(2) Ni)to Ni-rich phases(such as Ni4 Ti3 and Ni3 Ti_(2)).The phase transformation temperatures gradually decrease with increasing Ni content,and the predominant matrix phase transitions from martensite to austenite.The as-built NiTi alloy exhibits a typical tensile curve with a good tensile elongation of 11%,fabricated under suitable composition and microstructure conditions.This result surpasses values reported in current in-situ synthesized NiTi alloys through additive manufacturing methods.Moreover,it almost reaches the levels achieved by additively manufactured NiTi alloys using pre-alloyed raw materials.Furthermore,this study reports,for the first time in the field of in-situ synthesized NiTi alloys,a good tensile shape memory effect,achieving an im-pressive recovery rate of up to 70%under a tensile strain of 6%.This investigation provides a meaningful theoretical perspective and technical strategy for the integrated customization of NiTi alloy components in structure,composition,and function.This low-cost and high-efficiency approach is particularly attrac-tive for the preparation of functional graded,large-scale and disposable NiTi components. 展开更多
关键词 NiTi shape memory alloys In-situ synthesize Electron beam Directed energy deposition Tensile properties
原文传递
Phase Transformation Behavior and Smart Applications of Shape Memory Alloys
18
作者 Jiao Luo 《控制工程期刊(中英文版)》 2025年第2期7-11,共5页
Shape memory alloys(SMAs)are unique materials that exhibit the ability to recover their original shape upon heating after being deformed at low temperatures.Due to their remarkable properties,such as high strength,exc... Shape memory alloys(SMAs)are unique materials that exhibit the ability to recover their original shape upon heating after being deformed at low temperatures.Due to their remarkable properties,such as high strength,excellent fatigue resistance,and the ability to undergo significant recoverable deformation,SMAs have found extensive applications in various fields,including biomedical devices,robotics,aerospace,automotive industries,and smart textiles.This paper provides a comprehensive overview of the phase transformation behavior and smart applications of SMAs,focusing on the underlying mechanisms,characteristics,and technological advancements in SMA-based devices.It explores the various phases involved in SMA behavior,including the martensitic and austenitic phases,thermoelastic transformations,and stress-induced phase transformations.Furthermore,this paper discusses the applications of SMAs in smart technologies,including their use in medical devices,actuators,sensors,and energy harvesting systems.By exploring the key factors influencing phase transformations,this study highlights the potential of SMAs in designing next-generation smart materials and systems. 展开更多
关键词 shape memory Alloys Phase Transformation Martensitic Phase Austenitic Phase Smart Applications Biomedical Devices Actuators SENSORS Energy Harvesting
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
19
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
4D Printing Micelle-enhanced Shape Memory Polymer for Minimally Invasive Implant
20
作者 Fu-Kang Liu Zhe Lu +6 位作者 Jing-Jing Cui Yun-Long Guo Chen Liang Shi-Wei Feng Zhen-Xiang Wang Zhi-Jie Mao Biao Zhang 《Chinese Journal of Polymer Science》 2025年第11期1991-1999,I0008,共10页
4D-printable shape memory polymers(SMPs)hold great promise for fabricating shape morphing biomedical devices,but most existing printed polymers either require harsh activation conditions or lack sufficient mechanical ... 4D-printable shape memory polymers(SMPs)hold great promise for fabricating shape morphing biomedical devices,but most existing printed polymers either require harsh activation conditions or lack sufficient mechanical strength for vascular implantation.Here,we report a dual-stimuli-responsive shape memory polymer system enhanced by acrylated Pluronic F127(PF127-DA)micelles,which can be fabricated using digital light processing(DLP)based 3D printing.The PF127-DA based nanoscale micelles,which are formed via self-assembly in the hydrogel ink for 3D printing,act as crosslinkers to improve mechanical strength,fatigue resistance and elastic recovery.After drying the printed hydrogel,the obtained SMPs exhibit excellent shape recovery behaviour under mild physiological conditions—specifically body temperature(37℃)and aqueous swelling—resulting in recovery stress up to about 150?k Pa.This swelling-assisted actuation enables effective radial support,making the printed constructs suitable for vascular use.In vitro cytocompatibility assays with NIH/3T3 fibroblasts confirmed the suitable biocompatibility.Furthermore,the self-expanding behavior of the printed stents was validated in an occluded vessel model under physiological conditions.These results demonstrate the feasibility of 4D printed micelle-enhanced SMP for patient-specific,minimally invasive vascular stents and other soft implantable devices requiring high recovery force under physiological stimulation. 展开更多
关键词 4D printing shape memory polymer(SMP) Micelle-enhanced Digital light processing(DLP) Minimally invasive vascular stent
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部