The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water car...The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water carrying capacity and operational environment of the saturator,coupled with the performance and economic evaluation of systems under various configurations,can substantially facilitate its commercial implementation.Unlike the conventional two-stage MGTC system that solely comprises aftercooling and regenerative processes,this study proposes a three-stage MGTC system with an intercooling process(IMGTC),which considers the reuse of cooling water and energy recovery.The pricing allocation and energy depreciation characteristics of components are analyzed,and the impact of key variables is considered.Finally,economic optimization of the system is conducted using ISIGHT to identify the optimal parameter combination and results.The results indicate that the saturator price of IMGTC is lower and its exergy efficiency is higher than that of MGTC.The average water capacity of the IMGTC saturator is only 57.4%of that of the MGTC saturator,but the average exergy efficiency of IMGTC is 1.1%higher than that of MGTC.Moreover,external parameters all lead to the levelized cost of electricity(LCOE).Thermo-economic optimization shows that the optimal LCOE of IMGTC is 0.26%lower than that of MGTC.This study confirms the feasibility of IMGTC,as well as its thermodynamic and economic advantages over MGTC.展开更多
基金support from the fund of State Key Laboratory of Long-life High Temperature Materials(DEC8300CG202210279EE280285)the Fundamental Research Funds for the Central Universities(501XTCX2023146001).
文摘The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water carrying capacity and operational environment of the saturator,coupled with the performance and economic evaluation of systems under various configurations,can substantially facilitate its commercial implementation.Unlike the conventional two-stage MGTC system that solely comprises aftercooling and regenerative processes,this study proposes a three-stage MGTC system with an intercooling process(IMGTC),which considers the reuse of cooling water and energy recovery.The pricing allocation and energy depreciation characteristics of components are analyzed,and the impact of key variables is considered.Finally,economic optimization of the system is conducted using ISIGHT to identify the optimal parameter combination and results.The results indicate that the saturator price of IMGTC is lower and its exergy efficiency is higher than that of MGTC.The average water capacity of the IMGTC saturator is only 57.4%of that of the MGTC saturator,but the average exergy efficiency of IMGTC is 1.1%higher than that of MGTC.Moreover,external parameters all lead to the levelized cost of electricity(LCOE).Thermo-economic optimization shows that the optimal LCOE of IMGTC is 0.26%lower than that of MGTC.This study confirms the feasibility of IMGTC,as well as its thermodynamic and economic advantages over MGTC.