期刊文献+
共找到8,649篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing
1
作者 王松可 宋云涛 +1 位作者 谢韩 雷明准 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第11期1011-1016,共6页
An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating stat... An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating states (pumping and regeneration) and foreseeable accidents with the cryo-pump. This paper describes a thermal-structural coupled analysis of the present TCPH according to tho allowatfle stress criteria of RCC-MR, in which the worst cases and outcomes of various load combinations are obtained. Meanwhile, optimization of the structure has been carried oul, to obtain positive analysis results and an adequate safety margin. 展开更多
关键词 ITER TCPH thermal-structural coupled analysis 1R CC-MR
在线阅读 下载PDF
Coupled aeroelastic analysis of a panel in supersonic flow with add-on acoustic black hole
2
作者 Zhuogeng ZHANG Hongli JI +2 位作者 Jinhao QIU Kaihua YUAN Li CHENG 《Chinese Journal of Aeronautics》 2025年第5期121-133,共13页
This study introduces a novel approach for coupled aeroelastic analysis of panel subjected to supersonic airflow,utilizing Add-On Acoustic Black Hole(AABH)to mitigate panel flutter.Employing Galerkin's method to d... This study introduces a novel approach for coupled aeroelastic analysis of panel subjected to supersonic airflow,utilizing Add-On Acoustic Black Hole(AABH)to mitigate panel flutter.Employing Galerkin's method to discretize aeroelastic equation of panel and leveraging finite element method to derive a reduced discrete model of AABH,this study effectively couples two substructures via interface displacement.Investigation into the interactive force highlights the modal effective mass,frequency discrepancy between oscillation and AABH mode,and modal damping ratio as critical factors influencing individual AABH mode in flutter suppression.The selection of effective AABH modes,closely linked to these factors,directly influences the accuracy of simulations.The results reveal that AABH notably enhances the panel's critical flutter boundary by14.6%,a significant improvement over the 3.6%increase afforded by equivalent mass.Furthermore,AABH outperforms both the tuned mass damper and nonlinear energy sink in flutter suppression efficacy.By adjusting the AABH's geometrical parameters to increase the accumulative modal effective mass within the pertinent frequency range,or choosing a suitable installation position for AABH,its performance in flutter suppression is further optimized.These findings not only underscore the AABH's potential in enhancing aeroelastic stability but also provide a foundation for its optimal design. 展开更多
关键词 Panel flutter Acoustic black hole Flutter suppression coupled analysis Aeroelastic
原文传递
The N-soliton solution and its asymptotic analysis of the fractional coupled Gerdjikov–Ivanov equation
3
作者 Xiaoqian Huang Huanhe Dong Yong Zhang 《Communications in Theoretical Physics》 2025年第12期14-31,共18页
In this paper,we investigate the integrable fractional coupled Gerdjikov-Ivanov equation and derive its explicit form by employing the completeness relation of squared eigenfunctions.Based on the Riemann-Hilbert metho... In this paper,we investigate the integrable fractional coupled Gerdjikov-Ivanov equation and derive its explicit form by employing the completeness relation of squared eigenfunctions.Based on the Riemann-Hilbert method,we construct the fractional N-soliton solutions.We find that as the powerεof the Riesz fractional derivative increases,the amplitudes of the fractional soliton solutions remain invariant,while their widths decrease and the absolute values of the wave velocity,group velocity,and phase velocity increase.Additionally,we examine the long-time asymptotic behavior of the fractional N-soliton solution.The results show that as t→±∞,the solution can be approximated by the sum of N fractional one-soliton solutions,with each soliton's amplitude and velocity remaining constant,whereas both position and phase shifts are observed. 展开更多
关键词 fractional coupled Gerdjikov-Ivanov equation Riemann-Hilbert method N-soliton solution asymptotic analysis
原文传递
A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations 被引量:43
4
作者 FANG Chuanglin ZHOU Chenghu +2 位作者 GU Chaolin CHEN Liding LI Shuangcheng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第12期1431-1449,共19页
Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China.... Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China. However, the development of mega-urban agglomerations has triggered the interactive coercion between resources and the eco-envi- ronment. The interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations represent frontier and high-priority research topics in the field of Earth system science over the next decade. In this paper, we carried out systematic theo- retical analysis of the interactive coupling mechanisms and coercing effects between ur- banization and the eco-environment in mega-urban agglomerations. In detail, we analyzed the nonlinear-coupled relationships and the coupling characteristics between natural and human elements in mega-urban agglomerations. We also investigated the interactive coercion intensities between internal and external elements, and the mechanisms and patterns of local couplings and telecouplings in mega-urban agglomeration systems, which are affected by key internal and external control elements. In addition, we proposed the interactive coupling theory on urbanization and the eco-environment in mega-urban agglomerations. Furthermore we established a spatiotemporal dynamic coupling model with multi-element, multi-scale, multi-scenario, multi-module and multi-agent integrations, which can be used to develop an intelligent decision support system for sustainable development of mega-urban agglomera- tions. In general, our research may provide theoretical guidance and method support to solve problems related to mega-urban agglomerations and maintain their sustainable development. 展开更多
关键词 mega-urban agglomeration URBANIZATION ECO-ENVIRONMENT interactive coupled effects coupling theory process of theoretical analysis
原文传递
Analysis of CFRP milling damage patterns under different laying angles with force-thermal coupling effects
5
作者 WANG Yiqi MAO Yaning +3 位作者 FENG Zhenyang JING Xiao CHEN Liangzi HE Daliang 《纤维复合材料》 2025年第3期3-7,共5页
The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous mill... The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous milling process becomes a key factor affecting the performance of composites,and the high milling temperature induces a variety of processing defects.This paper obtained the temperature variation data during the end milling process of CFRP laminates through experiments.After data fitting,the data were transformed into a function of heat flux density varying with time.In the finite element analysis,a double-ellipsoid moving heat source model was introduced,and a moving heat source subrou-tine was written based on the time-varying function of heat flux density to more accurately describe the thermal effects dur-ing the milling process and simulate the changes in the temperature field during milling.The Hashin failure criterion is a-dopted as the basis of fiber and matrix failure,and the simulation results of the temperature field are input into the thermal-force coupling simulation model as the predefined field conditions for solving and analyzing by means of sequential thermal-force coupling,so as to establish a thermal-force coupling simulation and analysis model for milling processing of CFRP end faces.The model simulation results can provide a basis for exploring the damage evolution law of CFRP material under the influence of temperature. 展开更多
关键词 CFRP MILLING finite element analysis moving heat source thermo-mechanical coupling
在线阅读 下载PDF
Inter-hemispheric couplings in the middle atmosphere exhibited by principal component analysis of the SD-WACCM-X simulations
6
作者 Sheng-Yang Gu YuBo Zeng +3 位作者 Jin Hu YuSong Qin Liang Tang YuXuan Liu 《Earth and Planetary Physics》 2025年第4期925-937,共13页
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric... This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January. 展开更多
关键词 inter-hemispheric coupling principal component analysis middle atmosphere quasi-two-day waves
在线阅读 下载PDF
Cascading failure analysis of an interdependent network with power-combat coupling
7
作者 WANG Yang TAO Junyong +2 位作者 ZHANG Yun’an BAI Guanghan DUI Hongyan 《Journal of Systems Engineering and Electronics》 2025年第2期405-422,共18页
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy... Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method. 展开更多
关键词 cascading failure survivability analysis interdepen-dent network power-combat(P-C)coupling.
在线阅读 下载PDF
Thermodynamic analysis and simulation for gas baffle entrance collimator of EAST-NBI system based on thermo-fluid coupled method 被引量:5
8
作者 Ling Tao Chun-Dong Hu Yuan-Lai Xie 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第1期90-95,共6页
The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the bea... The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system. 展开更多
关键词 Neutral BEAM injection High-heat-flux component BEAM COLLIMATOR Thermo-fluid coupled method Thermodynamic analysis
在线阅读 下载PDF
A MULTI-COUPLED FINITE ELEMENT ANALYSIS OF RESISTANCE SPOT WELDING PROCESS 被引量:3
9
作者 Hou Zhigang Wang Yuanxun +1 位作者 Li Chunzhi Chert Chuanyao 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期86-94,共9页
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire... A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated. 展开更多
关键词 Finite Element analysis (FEA) Resistance Spot Welding (RSW) electrical-thermal coupling thermo-elastic-plastic analysis thermal behavior mechanical feature
在线阅读 下载PDF
Nonlinear Coupled Dynamics Analysis of A Truss Spar Platform 被引量:3
10
作者 LI Cheng-xi ZHANG Jun 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期835-850,共16页
Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gu... Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures. 展开更多
关键词 coupled dynamic analysis nonlinear effect hybrid wave model (HWMO
在线阅读 下载PDF
SECTIONAL FINITE ELEMENT ANALYSIS OF COUPLED DEFORMATION BETWEEN ELASTOPLASTIC SHEET METAL AND VISCO-ELASTOPLASTIC BODY 被引量:4
11
作者 Zhongjin Wang Jianguang Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第2期153-165,共13页
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium us... The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the viscoelastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm. 展开更多
关键词 viscous pressure forming(VPF) sheet forming sectional finite element analysis coupled deformation visco-elastoplastic pressure-carrying medium
原文传递
Probabilistic model and analysis of coupled train-ballasted track-subgrade system with uncertain structural parameters 被引量:8
12
作者 MAO Jian-feng XIAO Yuan-jie +2 位作者 YU Zhi-wu Erol TUTUMLUER ZHU Zhi-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2238-2256,共19页
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce... Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system. 展开更多
关键词 coupled train-ballast-subgrade system structural parameter uncertainty stochastic dynamic analysis probability density evolution method wheel-rail interaction
在线阅读 下载PDF
Modal analysis of coupled vibration of belt drive systems 被引量:2
13
作者 李晓军 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第1期9-13,共5页
The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm.... The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies. 展开更多
关键词 belt drive system modal analysis axially moving string coupled vibration FREQUENCY
在线阅读 下载PDF
Thermal-electrical Coupled Analysis and Experimental Investigation on Spark Plasma Sintering of SiC Ceramics 被引量:2
14
作者 骆俊廷 SUN Yan +1 位作者 ZHANG Chunxiang ZHAO Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1120-1124,共5页
Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature... Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature-time curve deserved by SPS experiment. The concept of equivalent radiation coefficient was presented and applied during the simulation. The temperature distribution regularity of SiC ceramics sintered by SPS technology was got by thermal-electrical coupled finite element simulation. The experimental results show that by thermal-electrical coupled finite element analysis, the temperature rising and distribution regularity of nonconductive material can be preferable forecasted in the sintering process of SPS. In the initial stage of the heat preservation, the temperature of the central part of the sample has achieved sintering temperature, but now, the temperature of the sample is not uniform. The temperature for each part of the die is also quite different and the sample temperature in the center is higher than that in the edge. In the end of heat preservation, the central temperature of the sample is 50 ℃higher than the required sintering temperature, and the temperature gap for each part of the die decreases gradually. 展开更多
关键词 SIC spark plasma sintering thermal-electrical coupled analysis finite element simulation
原文传递
Nonlinear Random Motion Analysis of Coupled Heave-Pitch Motions of a Spar Platform Considering lst-Order and 2nd-Order Wave Loads 被引量:6
15
作者 Shuxiao Liu Yougang Tang Wei Li 《Journal of Marine Science and Application》 CSCD 2016年第2期166-174,共9页
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa... In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected. 展开更多
关键词 spar platform coupled heave-pitch random waves 2nd-order wave loads transient wave elevation time domain analysis
在线阅读 下载PDF
Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry 被引量:2
16
作者 Qian-hua LUO Hai-zhou WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第8期730-737,共8页
An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to... An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap- proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain- less steel sheets served as research objects: 3 mm×l 300 mm hot-rolled stainless steel plate and 1 mm×l 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area -44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla- tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of 27A1+, 44Ca+, 47Ti-, 55Mn+ and 56Fe+ within an area of interest possible. One-dimensional (ID) content line distribution maps and two- dimensional (2D) contour maps for specific positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta- tistic segregation and content-frequency distribution. 展开更多
关键词 stainless steel sheet laser ablation inductively coupled plasma mass spectrometry elemental distribution statistic analysis
原文传递
2D FEM analysis for coupled thermo-hydro-mechanical-migratory processes in near field of hypothetical nuclear waste repository 被引量:3
17
作者 张玉军 张维庆 《Journal of Central South University》 SCIE EI CAS 2010年第3期612-620,共9页
In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hyd... In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m^3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m^3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process. 展开更多
关键词 radioactive nuclide CONCENTRATION thermo-hydro-mechanical-migratory coupling 2D FEM analysis
在线阅读 下载PDF
Spudcan Penetration Simulation Using the Coupled Eulerian-Lagrangian Method with Thermo-Mechanical Coupled Analysis 被引量:1
18
作者 YIN Qilin DONG Sheng +1 位作者 JIANG Fengyuan GUEDES SOARES Carlos 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第2期317-327,共11页
A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mec... A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mechanical properties during spudcan penetration in normally consolidated clay soil. In the CEL model, the normal method of assigning an increasing shear strength profile with depth(NA) is defective due to its Eulerian framework. In this paper, a new technique is proposed to update soil material properties by introducing thermo-mechanical coupled analysis(TMCA) to the CEL models. During establishment of the CEL models, the optimal penetration velocity and minimum mesh size are determined through parametric studies. Reasonability and accuracy are then verified through comparison of the preliminary results with the soil flow configuration and penetration resistance(Fv) of a centrifuge test, and the results of the proposed method are compared with those of the remeshing and interpolation technique with small strain(RITSS) method. To achieve a CEL model with satisfactory accuracy, the NA and TMCA methods implemented in the CEL models and the RITSS method are first adopted in weightless soil. Comparison of the findings with those obtained in previous studies shows that the TMCA method can update material properties and predict Fv. The TMCA method is then applied to soils with self-weight and different shear strength profiles. Results show that the proposed method is capable of accurately modeling the large deformation problem of spudcan penetration in non-homogeneous clay. 展开更多
关键词 THERMO-MECHANICAL coupled analysis NON-HOMOGENEOUS clay SPUDCAN PENETRATION CEL RITSS
在线阅读 下载PDF
Train–track coupled dynamics analysis:system spatial variation on geometry,physics and mechanics 被引量:10
19
作者 Lei Xu Wanming Zhai 《Railway Engineering Science》 2020年第1期36-53,共18页
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo... This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively. 展开更多
关键词 RAILWAY engineering Stochastic dynamic analysis Train-track interaction Vehicle-track coupled dynamics TRACK IRREGULARITIES Longitudinal INHOMOGENEITY
在线阅读 下载PDF
Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates 被引量:1
20
作者 Xun WANG Chunxia XUE Haitao LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第8期1155-1168,共14页
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration ... A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results. 展开更多
关键词 PIEZOELECTRIC rectangular thin plate thermo-piezoelectric-mechanical coupling HARMONIC BALANCE method (HBM) primary resonance analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部