Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr...Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.展开更多
The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track ...The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper. In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50 m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.展开更多
Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Cr...Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Crystallization pressure calculation from basalts with 5.0wt%〈MgO〈8.0wt % shows that magma crystallization pressures beneath near-EPR seamounts are positively and negatively correlated with Nas and Fes, respectively. However, these correlations are indistinct in axial lavas, which can be explained by chemical homogenization induced by extensive mixing processes. In each segment divided by major transforms and over-lapping spreading centers (OSCs), near-EPR seamount lavas have higher magma crystallization pressures, higher Fes and lower Nas than the EPR lavas, which indicate cooler lithosphere, lower degrees and shallower melting depths beneath near-EPR seamounts than the EPR. The correlations between magma crystallization pressures and melting conditions beneath near-EPR seamounts imply that the source thermal state controls the melting degree and melt flux, and then melting process controls the shallow lithosphere temperature and magma crystallization depth (pressure). The cooler mantle sources beneath near-EPR seamounts produce a lower degree of melting and a less robust magma supply, which results in a deep thermal equilibrium level and high magma crystallization pressure. The magma crystallization pressure decreases significantly as spreading rate of the EPR increases from ~80 mm/year in the north (16~N) to ~160 mm/year in the south (19~S), while this trend is unobvious in near-EPR seamounts. This suggests that the magma supply controlled by spreading rate dominates the ridge crust temperature and magma crystallization depth, while the near-EPR seamount magma supply is not dominated by the axial spreading rate. Because most seamounts form and gain most of their volume within a narrow zone of 5-15 km from ridge axis, they provide good constraint on magma supply and thermal structure beneath the EPR. High magma crystallization pressures in seamounts indicate dramatic temperature decrease from the EPR. The crystallization pressures of seamount lavas are well correlated with mantle melting parameters but in a blurry relationship with axial spreading rate. Despite the adjacency of the EPR and nearby seamounts, the thermal structure beneath the near-EPR seamounts are controlled by their own magma supply and conductive cooling, chemically and thermally unaffected by magmatism beneath the ridge axis.展开更多
The asthenosphere upwelled on a large scale in the western Pacific and South China Sea during the Cenozoic, which formed strong upward throughflow and caused the thermal structure to be changed obviously. The mathemat...The asthenosphere upwelled on a large scale in the western Pacific and South China Sea during the Cenozoic, which formed strong upward throughflow and caused the thermal structure to be changed obviously. The mathematical analysis has demonstrated that the upward throughflow velocity may have varied from 3×10^11 to 6×10^12 m/s. From the relationship between the lithospheric thickness and the conductive heat flux, the lithospheric heat flux in the western Pacific should be above 30 mW/m^2, which is consistent with the observed data. The huge low-speed zone within the upper mantle of the marginal sea in the western Pacific reflects that the upper mantle melts partially, flows regionally in the regional stress field, forms the upward heat flux at its bottom, and causes the change of the lithospheric thermal structure in the region. The numerical simulation result of the expansion and evolution in the South China Sea has demonstrated that in the early expansion, the upward throughflow velocity was relatively fast, and the effect that it had on the thickness of the lithosphere was relatively great,resulting in the mid-ocean basin expanding rapidly. After the formation of the ocean basin in the South China Sea, the upward throughflow velocity decreased, but the conductive heat flux was relatively high, which is close to the actual situation. Therefore, from the heat transfer point of view, this article discusses how the upward heat flux affects the lithospheric thermal structure in the western Pacific and South China Sea. The conclusions show that the upward heat throughflow at the bottom of the lithospheric mantle resulted in the tectonic deformation at the shallow crust. The intensive uplifts and rifts at the crust led to the continent cracks and the expansion in the South China Sea.展开更多
The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subduc...The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.展开更多
The sensitive area of targeted observations for short-term(7 d)prediction of vertical thermal structure(VTS)in summer in the Yellow Sea was investigated.We applied the Conditional Nonlinear Optimal Perturbation(CNOP)m...The sensitive area of targeted observations for short-term(7 d)prediction of vertical thermal structure(VTS)in summer in the Yellow Sea was investigated.We applied the Conditional Nonlinear Optimal Perturbation(CNOP)method and an adjoint-free algorithm with the Regional Ocean Modeling System(ROMS).We used vertical integration of CNOP-type temperature errors to locate the sensitive areas,where reduction of initial errors is expected to yield the greatest improvement in VTS prediction for the selected verification area.The identified sensitive areas were northeast−southwest orientated northeast to the verification area,which were possibly related to the southwestward background currents.Then,we performed a series of sensitivity experiments to evaluate the effectiveness of the identified sensitive areas.Results show that initial errors in the identified sensitive areas had the greatest negative effect on VTS prediction in the verification area compared to errors in other areas(e.g.,the verification area and areas to its east and northeast).Moreover,removal of initial errors through deploying simulated observations in the identified sensitive areas led to more refined prediction than correction of initial conditions in the verification area itself.Our results suggest that implementation of targeted observation in the CNOP-based sensitive areas is an effective method to improve short-term prediction of VTS in summer in the Yellow Sea.展开更多
Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent water...Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level 〉95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69℃, 0.52℃ and 1.18℃ respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17~C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007℃/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all 〈20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline.展开更多
Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencol...Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencollected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper man-tle represented by the pyroxene geotherm is about 3.3℃ / km, which is much less than that derived from theconductive thermal model (≈14℃ / km), implying the great significance of convective heat transfer. The calcu-lation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively.The perturbation in the thermal structure of the upper mantle is an important manifestation of thetectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based onthe pyroxene geotherm and its comparison with the current geothermal field derived from the measurements ofthe surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The currentgeothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result ofthe tectonothermal disturbance in the Neogene-Quaternary, in other words, the lithosphere has just begun toCool.展开更多
In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T...In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.展开更多
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolu- tions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm C...In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolu- tions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and control- ling tests led to the following conclusions. In winter, the direction of the Yellow Sea Coastal Current in the sur- face layer was controlled partly by tide instead of wind. In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.展开更多
-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper ...-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper western tropical Pacific Ocean. The effects of the abmormal variation on the subtropical high over the Northwest Pacific Ocean are discussed. During the El Nino: (1) In the east part of the western tropical Pacific Ocean (the subsurface temperature data on the 165° E section are taken as an example), the water wanner than 29 C in the upper layer spread on the longitudinal section and positive temperature anormalies appeared in a large area of the sea surface. (2) In the west part of the western tropical Pacific Ocean (the subsurface temperature data on the 137°E section are representative ), the cross section occupied by the upper layer warmer water ( T >28 ℃ ) became shrunk, and the sea surface temperature showed negative amomalies. (3) The eastward flows in the upper layer of the 165°E section strengthened. (4)The northward flow volume of warm water from the origin area of Kuroshio, i. e. , the tropical oceanic area south of 18?0' N and from the west of 130?E to the Philippine coast, decreased. When those kinds of abnomal variation occurred, air divergence on the low level (1 000 hPa) over the Northwest Pacific Ocean was intensified, favourable to the strengthening of subtropical high over the Northwest Pacific Ocean.展开更多
A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven ...A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be significant for biological plant production.展开更多
Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth’s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths col...Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth’s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths collected from Haoti village, Dangchang County, Gansu Province, western China. The main purpose of the study is to gain an insight into the thermal structure and rheology of the upper mantle beneath the region. The results show that the upper mantle of the region is composed mainly of spinel lherzolite at shallower depth (52~75km), and garnet lherzolite at greater depth (greater than 75km), instead of harzburgite and dunite as proposed by some previous studies. The upper mantle geotherm derived from the equilibrium temperatures and pressures of xenoliths from the region is lower than that of North China, and is somewhat closer to the Oceanic geotherm. The crust-mantle boundary is determined from the geotherm to be at about 52km, and the Moho seems to be the transition zone of lower crust material with spinel lherzolite. If we take 1280℃ as the temperature of the top of asthenosphere, then the lithosphere-asthenosphere boundary should be at about 120km depth. The differential stress of the upper mantle is determined by using recrystallized grain size piezometry, while the strain rate and equivalent viscosity are determined by using the high temperature flow law of peridotite. The differential stress, strain rate and viscosity profiles constructed on the basis of the obtained values indicate that asthenospheric diapir occurred in this region during the Cenozoic time, resulting in the corresponding thinning of the lithosphere. However, the scale and intensity of the diapir was significantly less than that occurring in the North China region. Moreover, numerous small-scale shear zones with localized deformation might occur in the lithospheric mantle, as evidenced by the extensive occurrence of xenoliths with tabular equigranular texture.展开更多
he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on freque...he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on frequency, on the coordinates ofmodal nodes and on the upper and lower bounds of the design vanables are studied us-ing Kuhn-Tucker conditions as optimal cntenon. The vanation of the flrst three ordernatural frequencies, modal shapes and minimum structural weight vs temperature gra-dient are discussed. It is pointed out that it is imperative to take into account the effectof aerodynamic heating on structural dynamic optimization. Calculation example showsthat the method obtained is feasible and efficient.展开更多
As the most seismically active regions in the world,oceanic subduction zones show contrasting seismicity in different regions.To investigate the relationships among the thermal structure,metamorphism,deformation,and f...As the most seismically active regions in the world,oceanic subduction zones show contrasting seismicity in different regions.To investigate the relationships among the thermal structure,metamorphism,deformation,and fluid activity of oceanic subduction zones,we summarized progress in numerical modeling of oceanic subduction zones,pressure and temperature paths of high-and ultrahigh-pressure metamorphic rocks and ophiolites,deformation of the subduction plate interface,seismic observations in subduction zones,and stabilities of hydrous minerals.The thermal structure of subduction zones not only controls depths of dehydration embrittlement of hydrous minerals,but also affects the mechanical coupling state of the subduction plate interface,eclogitization of the subducted oceanic crust,and phase transition of metastable olivine in the subducted lithospheric mantle.Dehydration embrittlement of hydrous minerals is the primary mechanism of intermediate-depth earthquakes in subduction zones.Earthquakes in warm subduction zones predominantly occur at shallow to intermediate depths,where most hydrous minerals dehydrate at depths of 80–160 km beneath the arc and the amounts of earthquakes decrease sharply below 160 km.By contrast,earthquakes in cold subduction zones distribute continuously to~300 km and hydrous minerals release water at greater depths.Nominally anhydrous minerals and dense hydrous magnesium silicates could carry water down to depths>300 km,resulting in localized water enrichment in the mantle transition zone.More experimental and seismic evidence is needed to decipher how fluid activity triggers slow earthquakes and deep-focus earthquakes.Knowledge about the origins of ophiolites and fossil earthquakes in ancient subduction zones will provide new insights into the tectonic evolution,the deep water cycle,and earthquake mechanisms of oceanic subduction zones.展开更多
During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in co...During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in controlling physical and chemical property changes in subduction zones. It also affects our understanding of many key geological processes, such as mineral dehydration, rock partial melting, arc volcanism, and seismic activities in subduction zones. There are mainly two ways for studying thermal structure of subduction zones with geodynamic models: analytical model and numerical model. Analytical model provides insights into the most dominant controlling physical parameters on the thermal structure, such as slab age, velocity and dip angle, shear stress and thermal conductivity, etc. Numerical model can further deal with more complicated environments, such as viscosity change in the mantle wedge, coupling process between slabs and the ambient mantle, and incorporation of petrology and mineralogy. When applying geodynamic modeling results to specific subduction zones on the Earth, there are many factors which may complicate the process, therefore it is difficult to precisely constrain the thermal structure of subduction zones. With the development of new quantitative methods in geophysics and geochemistry, we may obtain more observational constraints for thermal structure of subduction zones, thus providing more reasonable explanations for geological processes related to subduction zones.展开更多
The response of the South China Sea(SCS) to Typhoon Chanchu(2006) was examined using the MM5 and POM model. In the POM model, sea surface boundary conditions were forced by the simulation wind field from MM5, the ...The response of the South China Sea(SCS) to Typhoon Chanchu(2006) was examined using the MM5 and POM model. In the POM model, sea surface boundary conditions were forced by the simulation wind field from MM5, the velocity forcing was introduced in the eastern boundary and the computational schemes of heat fluxes at the surface were introduced. Comparison with the observation data shows that the simulated results are reliable. In the response process of the SCS to Typhoon Chanchu, the influence of the heat fluxes on thermal structure of the SCS was regionally different. Strong wind forcing would lead to upwelling phenomenon in the lateral boundary of deep water basin. Furthermore, the Ekman pumping theory was used to discuss subsurface upwelling and downwelling phenomenon in typhoon forced stage.展开更多
The Dipole Mode in tropical Indian Ocean (DMI) is a newly verified independent internal mode of atmosphere ocean system in Indian Ocean. Its surface manifestation is illustrated in detail with the aid of the historic...The Dipole Mode in tropical Indian Ocean (DMI) is a newly verified independent internal mode of atmosphere ocean system in Indian Ocean. Its surface manifestation is illustrated in detail with the aid of the historical data sets. But relatively few is known about its vertical characteristics. Here the vertical thermal structure of DMI is analyzed using the newly released WOCE GLOBAL DATA (V2.0). Attention is focused on the comparison of the abnormal upper ocean thermal structure along one section with the normal state in year 1990 respectively in two cases: in year 1994 when there was IDM but no E1 Nino and in year 1997 when there were DMI and also E1 Nino. This may shed light on the further theoretical and numerical study of IDM.展开更多
With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses...With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.展开更多
Tetraiodo-4,4'-bi-l,2,4-triazole (1) was synthesized from a reaction of iodine monochloride witb 4,4' bi- 1,2,4-triazole (2), which was prepared by a transamination reaction between 4-amine-1,2,4-triazole and N,...Tetraiodo-4,4'-bi-l,2,4-triazole (1) was synthesized from a reaction of iodine monochloride witb 4,4' bi- 1,2,4-triazole (2), which was prepared by a transamination reaction between 4-amine-1,2,4-triazole and N,N-dimethylformamide azine dihydrochloride (3) obtained via a Vilsmeier reaction. The title compound was extensively characterized by melting point, elemental analysis, 1R, HRMS and single crystal X-ray diffraction. The single crystal X-ray structural analysis reveals that compound 1 exhibits a stable conformation with the two triazole rings being perpendicular to minimize three-dimensional steric hindrance and stacking through aromatic zr. analysis from TGA and DSC indicates that resnectivelv. Jr packing interactions between molecules. The therma compound I decomposes at 275.40 ℃ and 338.35 C展开更多
基金benefited from the financial support of the CAS Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708)。
文摘Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.
文摘The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper. In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50 m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.
基金supported by the Pilot Project of Knowledge Innovation Program,Chinese Academy of Sciences(Grant NoKZCX2-EW-QN205)the National Natural Science Foundation of China(No41176043)the Program of Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences(Grant NoMGE2011KG05)
文摘Major elements of 2202 basalts from the East Pacific Rise (EPR) and 888 basalts from near- EPR seamounts are used to investigate their differences in magma crystallization pressures and mantle melting conditions. Crystallization pressure calculation from basalts with 5.0wt%〈MgO〈8.0wt % shows that magma crystallization pressures beneath near-EPR seamounts are positively and negatively correlated with Nas and Fes, respectively. However, these correlations are indistinct in axial lavas, which can be explained by chemical homogenization induced by extensive mixing processes. In each segment divided by major transforms and over-lapping spreading centers (OSCs), near-EPR seamount lavas have higher magma crystallization pressures, higher Fes and lower Nas than the EPR lavas, which indicate cooler lithosphere, lower degrees and shallower melting depths beneath near-EPR seamounts than the EPR. The correlations between magma crystallization pressures and melting conditions beneath near-EPR seamounts imply that the source thermal state controls the melting degree and melt flux, and then melting process controls the shallow lithosphere temperature and magma crystallization depth (pressure). The cooler mantle sources beneath near-EPR seamounts produce a lower degree of melting and a less robust magma supply, which results in a deep thermal equilibrium level and high magma crystallization pressure. The magma crystallization pressure decreases significantly as spreading rate of the EPR increases from ~80 mm/year in the north (16~N) to ~160 mm/year in the south (19~S), while this trend is unobvious in near-EPR seamounts. This suggests that the magma supply controlled by spreading rate dominates the ridge crust temperature and magma crystallization depth, while the near-EPR seamount magma supply is not dominated by the axial spreading rate. Because most seamounts form and gain most of their volume within a narrow zone of 5-15 km from ridge axis, they provide good constraint on magma supply and thermal structure beneath the EPR. High magma crystallization pressures in seamounts indicate dramatic temperature decrease from the EPR. The crystallization pressures of seamount lavas are well correlated with mantle melting parameters but in a blurry relationship with axial spreading rate. Despite the adjacency of the EPR and nearby seamounts, the thermal structure beneath the near-EPR seamounts are controlled by their own magma supply and conductive cooling, chemically and thermally unaffected by magmatism beneath the ridge axis.
基金supported jointly by the Important Direction Project of the CAS Knowledge Innovation Program (Nos. KZCX2-YW-203-01, KZCX2-YW-128-4)the Program of Key Laboratory of Marginal Sea Geology (No. MSGL04-8)
文摘The asthenosphere upwelled on a large scale in the western Pacific and South China Sea during the Cenozoic, which formed strong upward throughflow and caused the thermal structure to be changed obviously. The mathematical analysis has demonstrated that the upward throughflow velocity may have varied from 3×10^11 to 6×10^12 m/s. From the relationship between the lithospheric thickness and the conductive heat flux, the lithospheric heat flux in the western Pacific should be above 30 mW/m^2, which is consistent with the observed data. The huge low-speed zone within the upper mantle of the marginal sea in the western Pacific reflects that the upper mantle melts partially, flows regionally in the regional stress field, forms the upward heat flux at its bottom, and causes the change of the lithospheric thermal structure in the region. The numerical simulation result of the expansion and evolution in the South China Sea has demonstrated that in the early expansion, the upward throughflow velocity was relatively fast, and the effect that it had on the thickness of the lithosphere was relatively great,resulting in the mid-ocean basin expanding rapidly. After the formation of the ocean basin in the South China Sea, the upward throughflow velocity decreased, but the conductive heat flux was relatively high, which is close to the actual situation. Therefore, from the heat transfer point of view, this article discusses how the upward heat flux affects the lithospheric thermal structure in the western Pacific and South China Sea. The conclusions show that the upward heat throughflow at the bottom of the lithospheric mantle resulted in the tectonic deformation at the shallow crust. The intensive uplifts and rifts at the crust led to the continent cracks and the expansion in the South China Sea.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 41000000)National Basic Research Program of China(Grant No.2015CB856106)National Natural Science Foundation of China(41774105,41820104004,41688103).
文摘The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.
基金The National Natural Science Foundation of China under contract Nos 41705081 and 41906005the Innovation Special Zone Project under contract No.18-H863-05-ZT-001-012-06the Open Project Fund of the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2019A05.
文摘The sensitive area of targeted observations for short-term(7 d)prediction of vertical thermal structure(VTS)in summer in the Yellow Sea was investigated.We applied the Conditional Nonlinear Optimal Perturbation(CNOP)method and an adjoint-free algorithm with the Regional Ocean Modeling System(ROMS).We used vertical integration of CNOP-type temperature errors to locate the sensitive areas,where reduction of initial errors is expected to yield the greatest improvement in VTS prediction for the selected verification area.The identified sensitive areas were northeast−southwest orientated northeast to the verification area,which were possibly related to the southwestward background currents.Then,we performed a series of sensitivity experiments to evaluate the effectiveness of the identified sensitive areas.Results show that initial errors in the identified sensitive areas had the greatest negative effect on VTS prediction in the verification area compared to errors in other areas(e.g.,the verification area and areas to its east and northeast).Moreover,removal of initial errors through deploying simulated observations in the identified sensitive areas led to more refined prediction than correction of initial conditions in the verification area itself.Our results suggest that implementation of targeted observation in the CNOP-based sensitive areas is an effective method to improve short-term prediction of VTS in summer in the Yellow Sea.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX-3W-222 KZCX2-YW-Q11-02)+1 种基金National Basic Research Program of China (No.2007CB411802 2006CB403601)
文摘Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level 〉95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69℃, 0.52℃ and 1.18℃ respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17~C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007℃/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all 〈20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline.
文摘Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencollected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper man-tle represented by the pyroxene geotherm is about 3.3℃ / km, which is much less than that derived from theconductive thermal model (≈14℃ / km), implying the great significance of convective heat transfer. The calcu-lation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively.The perturbation in the thermal structure of the upper mantle is an important manifestation of thetectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based onthe pyroxene geotherm and its comparison with the current geothermal field derived from the measurements ofthe surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The currentgeothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result ofthe tectonothermal disturbance in the Neogene-Quaternary, in other words, the lithosphere has just begun toCool.
文摘In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.
基金Contribution No. 4616 from Institute of Oceanology, CAS. Project No.40406025 supported by NSFC.
文摘In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolu- tions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and control- ling tests led to the following conclusions. In winter, the direction of the Yellow Sea Coastal Current in the sur- face layer was controlled partly by tide instead of wind. In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.
文摘-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper western tropical Pacific Ocean. The effects of the abmormal variation on the subtropical high over the Northwest Pacific Ocean are discussed. During the El Nino: (1) In the east part of the western tropical Pacific Ocean (the subsurface temperature data on the 165° E section are taken as an example), the water wanner than 29 C in the upper layer spread on the longitudinal section and positive temperature anormalies appeared in a large area of the sea surface. (2) In the west part of the western tropical Pacific Ocean (the subsurface temperature data on the 137°E section are representative ), the cross section occupied by the upper layer warmer water ( T >28 ℃ ) became shrunk, and the sea surface temperature showed negative amomalies. (3) The eastward flows in the upper layer of the 165°E section strengthened. (4)The northward flow volume of warm water from the origin area of Kuroshio, i. e. , the tropical oceanic area south of 18?0' N and from the west of 130?E to the Philippine coast, decreased. When those kinds of abnomal variation occurred, air divergence on the low level (1 000 hPa) over the Northwest Pacific Ocean was intensified, favourable to the strengthening of subtropical high over the Northwest Pacific Ocean.
文摘A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be significant for biological plant production.
文摘Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth’s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths collected from Haoti village, Dangchang County, Gansu Province, western China. The main purpose of the study is to gain an insight into the thermal structure and rheology of the upper mantle beneath the region. The results show that the upper mantle of the region is composed mainly of spinel lherzolite at shallower depth (52~75km), and garnet lherzolite at greater depth (greater than 75km), instead of harzburgite and dunite as proposed by some previous studies. The upper mantle geotherm derived from the equilibrium temperatures and pressures of xenoliths from the region is lower than that of North China, and is somewhat closer to the Oceanic geotherm. The crust-mantle boundary is determined from the geotherm to be at about 52km, and the Moho seems to be the transition zone of lower crust material with spinel lherzolite. If we take 1280℃ as the temperature of the top of asthenosphere, then the lithosphere-asthenosphere boundary should be at about 120km depth. The differential stress of the upper mantle is determined by using recrystallized grain size piezometry, while the strain rate and equivalent viscosity are determined by using the high temperature flow law of peridotite. The differential stress, strain rate and viscosity profiles constructed on the basis of the obtained values indicate that asthenospheric diapir occurred in this region during the Cenozoic time, resulting in the corresponding thinning of the lithosphere. However, the scale and intensity of the diapir was significantly less than that occurring in the North China region. Moreover, numerous small-scale shear zones with localized deformation might occur in the lithospheric mantle, as evidenced by the extensive occurrence of xenoliths with tabular equigranular texture.
文摘he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on frequency, on the coordinates ofmodal nodes and on the upper and lower bounds of the design vanables are studied us-ing Kuhn-Tucker conditions as optimal cntenon. The vanation of the flrst three ordernatural frequencies, modal shapes and minimum structural weight vs temperature gra-dient are discussed. It is pointed out that it is imperative to take into account the effectof aerodynamic heating on structural dynamic optimization. Calculation example showsthat the method obtained is feasible and efficient.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF0803304)the National Natural Science Foundation of China(Grant Nos.41825006&41590623)。
文摘As the most seismically active regions in the world,oceanic subduction zones show contrasting seismicity in different regions.To investigate the relationships among the thermal structure,metamorphism,deformation,and fluid activity of oceanic subduction zones,we summarized progress in numerical modeling of oceanic subduction zones,pressure and temperature paths of high-and ultrahigh-pressure metamorphic rocks and ophiolites,deformation of the subduction plate interface,seismic observations in subduction zones,and stabilities of hydrous minerals.The thermal structure of subduction zones not only controls depths of dehydration embrittlement of hydrous minerals,but also affects the mechanical coupling state of the subduction plate interface,eclogitization of the subducted oceanic crust,and phase transition of metastable olivine in the subducted lithospheric mantle.Dehydration embrittlement of hydrous minerals is the primary mechanism of intermediate-depth earthquakes in subduction zones.Earthquakes in warm subduction zones predominantly occur at shallow to intermediate depths,where most hydrous minerals dehydrate at depths of 80–160 km beneath the arc and the amounts of earthquakes decrease sharply below 160 km.By contrast,earthquakes in cold subduction zones distribute continuously to~300 km and hydrous minerals release water at greater depths.Nominally anhydrous minerals and dense hydrous magnesium silicates could carry water down to depths>300 km,resulting in localized water enrichment in the mantle transition zone.More experimental and seismic evidence is needed to decipher how fluid activity triggers slow earthquakes and deep-focus earthquakes.Knowledge about the origins of ophiolites and fossil earthquakes in ancient subduction zones will provide new insights into the tectonic evolution,the deep water cycle,and earthquake mechanisms of oceanic subduction zones.
基金supported by the National Basic Research Program of China(Grant No.2015CB856106)
文摘During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in controlling physical and chemical property changes in subduction zones. It also affects our understanding of many key geological processes, such as mineral dehydration, rock partial melting, arc volcanism, and seismic activities in subduction zones. There are mainly two ways for studying thermal structure of subduction zones with geodynamic models: analytical model and numerical model. Analytical model provides insights into the most dominant controlling physical parameters on the thermal structure, such as slab age, velocity and dip angle, shear stress and thermal conductivity, etc. Numerical model can further deal with more complicated environments, such as viscosity change in the mantle wedge, coupling process between slabs and the ambient mantle, and incorporation of petrology and mineralogy. When applying geodynamic modeling results to specific subduction zones on the Earth, there are many factors which may complicate the process, therefore it is difficult to precisely constrain the thermal structure of subduction zones. With the development of new quantitative methods in geophysics and geochemistry, we may obtain more observational constraints for thermal structure of subduction zones, thus providing more reasonable explanations for geological processes related to subduction zones.
基金supported by the National Nature Science Foundation of China(Grant No.40906006)the Fundamental Research Funds for the Central Universities
文摘The response of the South China Sea(SCS) to Typhoon Chanchu(2006) was examined using the MM5 and POM model. In the POM model, sea surface boundary conditions were forced by the simulation wind field from MM5, the velocity forcing was introduced in the eastern boundary and the computational schemes of heat fluxes at the surface were introduced. Comparison with the observation data shows that the simulated results are reliable. In the response process of the SCS to Typhoon Chanchu, the influence of the heat fluxes on thermal structure of the SCS was regionally different. Strong wind forcing would lead to upwelling phenomenon in the lateral boundary of deep water basin. Furthermore, the Ekman pumping theory was used to discuss subsurface upwelling and downwelling phenomenon in typhoon forced stage.
文摘The Dipole Mode in tropical Indian Ocean (DMI) is a newly verified independent internal mode of atmosphere ocean system in Indian Ocean. Its surface manifestation is illustrated in detail with the aid of the historical data sets. But relatively few is known about its vertical characteristics. Here the vertical thermal structure of DMI is analyzed using the newly released WOCE GLOBAL DATA (V2.0). Attention is focused on the comparison of the abnormal upper ocean thermal structure along one section with the normal state in year 1990 respectively in two cases: in year 1994 when there was IDM but no E1 Nino and in year 1997 when there were DMI and also E1 Nino. This may shed light on the further theoretical and numerical study of IDM.
基金co-supported by the Excellent Youth Science Foundation of China(No.51722501)the China Postdoctoral Science Foundation(No.2016M600027)+1 种基金the National Natural Science Foundation of China(Nos.51575025 and 61703022)the Preliminary Exploration of Project of China(No.7131474)
文摘With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.
基金supported by the National Key Projects(No.00402040103)Youth Innovation Research Team of Sichuan for Carbon Nanomaterials(No.2011JTD0017)
文摘Tetraiodo-4,4'-bi-l,2,4-triazole (1) was synthesized from a reaction of iodine monochloride witb 4,4' bi- 1,2,4-triazole (2), which was prepared by a transamination reaction between 4-amine-1,2,4-triazole and N,N-dimethylformamide azine dihydrochloride (3) obtained via a Vilsmeier reaction. The title compound was extensively characterized by melting point, elemental analysis, 1R, HRMS and single crystal X-ray diffraction. The single crystal X-ray structural analysis reveals that compound 1 exhibits a stable conformation with the two triazole rings being perpendicular to minimize three-dimensional steric hindrance and stacking through aromatic zr. analysis from TGA and DSC indicates that resnectivelv. Jr packing interactions between molecules. The therma compound I decomposes at 275.40 ℃ and 338.35 C