期刊文献+
共找到837篇文章
< 1 2 42 >
每页显示 20 50 100
New soil thermal stabilization systems for building fundaments in permafrost regions
1
作者 Illia P. Rilo Grigory M. Dolgikh Vladimir F. Vlasov 《Research in Cold and Arid Regions》 CSCD 2013年第4期387-392,共6页
This paper describes new building construction methods that utilize soil thermal stabilization reghnes to compensate for negative environmental wanning and anthropogenic factors that impair fundament stability. Based ... This paper describes new building construction methods that utilize soil thermal stabilization reghnes to compensate for negative environmental wanning and anthropogenic factors that impair fundament stability. Based on long-standing research, the Funda- mentstroyarkos Company (FSA) of Tyumen, Russia has developed four primary seasonally active cooling devices (SCDs) that maintain soil in the frozen state, which are now extensively used on oil and gas facilities located in cold regions of Russia. This paper reports on the testing and validation of these SCDs in experimental conditions. On this basis, desigqls and technologies for building bases and foundations on permafrost with use of soil thermal stabilization systems, using carbon dioxide as the heat-transfer agent, were developed. 展开更多
关键词 thermal stabilization system seasonally-active cooling devices carbon dioxide thermal stabilization system perma-frost soil
在线阅读 下载PDF
Phase and Structural Transformation of Polyacrylonitrile Fiber during Two-Stage Thermal Stabilization
2
作者 Alfiya G. Fazlitdinova Vasiliy A. Tyumentsev 《Journal of Materials Science and Chemical Engineering》 2020年第11期54-63,共10页
The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fib... The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fiber in the process of isothermal thermal stabilization is considered by the methods of dilatometry and X-ray diffraction analysis. It is shown that preliminary short-term heat treatment at a lower temperature affects the process of structural transformations of the polyacrylonitrile fiber material and the formation of a new highly dispersed phase of the thermally stabilized fiber. 展开更多
关键词 Polyacrylonitrile Fiber thermal stabilization X-Ray Diffraction Analysis Coherent Scattering Regions
在线阅读 下载PDF
Advanced thermal-resistant aluminum conductor alloys:A comprehensive review
3
作者 Behrouz Abnar Samaneh Gashtiazar +1 位作者 Paul Rometsch Mousa Javidani 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期68-93,共26页
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv... This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr. 展开更多
关键词 electrical conductivity mechanical properties rare earth elements thermal stability scandium-and zirconium-containing aluminium alloy
在线阅读 下载PDF
Structure Evolution Mechanism of Poly(acrylonitrile/itaconic acid/acrylamide) during Thermal Oxidative Stabilization Process 被引量:3
4
作者 zhao-po zeng ze-chun shao +1 位作者 肖茹 yong-gen lu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第8期1020-1034,共15页
Polyacrylonitrile (PAN) polymers with different compositions were prepared by an efficient aqueous free-radical polymerization technique. Thermal properties of polyacrylonitrile homopolymer (PAN), poly(acrylonitr... Polyacrylonitrile (PAN) polymers with different compositions were prepared by an efficient aqueous free-radical polymerization technique. Thermal properties of polyacrylonitrile homopolymer (PAN), poly(acrylonitrile/itaconic acid) [P(AN/IA)] and poly(acrylonitrile/itaconic acid/acrylamide) [P(AN/IA/AM)] were studied by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetry in detail. It was found that AM had the ability to initiate and accelerate thermal oxidative stabilization process, which was confirmed by the lower initiation temperature and broader exothermic peak in P(AN/IA/AM) as compared with that in P(AN/IA) and PAN. The intensity of heat releasing during the thermal treatment was relaxed due to the presence of two separated exothermic peaks. Accompanied by DSC analysis and calculation of the apparent activation energy of cyclization reaction, two peaks were assigned to the ionic and free radical induction mechanisms, respectively. The higher rate constant in P(AN/IA/AM) indicated that the ionic mechanism actually had a kinetic advantage at promoting thermal stability over the free radical mechanism. This study clearly show that the synthesized P(AN/IA/AM) terpolymers possess larger room to adjust manufacture parameters to fabricate high performance of PAN-based carbon fibers. 展开更多
关键词 PAN terpolymers Structural evolution thermal oxidative stabilization thermal analysis Kinetics
原文传递
Densification,microstructure,mechanical properties,and thermal stability of high-strength Ti-modified Al-Si-Mg-Zr aluminum alloy fabricated by laser-powder bed fusion 被引量:1
5
作者 Yaoxiang Geng Zhifa Shan +2 位作者 Jiaming Zhang Tianshuo Wei Zhijie Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2547-2559,共13页
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion... Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly. 展开更多
关键词 laser-powder bed fusion Ti-modified Al-Si-Mg-Zr alloy MICROSTRUCTURE mechanical property thermal stability
在线阅读 下载PDF
Phase-change heterostructure with HfTe_(2)confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization 被引量:1
6
作者 S.W.Park H.J.Lee +6 位作者 K.A.Nirmal T.H.Kim D.H.Kim J.Y.Choi J.S.Oh J.M.Joo T.G.Kim 《Journal of Materials Science & Technology》 2025年第1期104-114,共11页
Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal condu... Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal conductivities of phase-change materials(PCMs)promote Joule heating dissi-pation.Repeated phase transitions also induce long-range atomic diffusion,limiting the durability.To address these challenges,phase-change heterostructure(PCH)devices that incorporate confinement sub-layers based on transition-metal dichalcogenide materials have been developed.In this study,we engi-neered a PCH device by integrating HfTe_(2),which has low thermal conductivity and excellent stability,into the PCM to realize PCRAM with enhanced thermal efficiency and structural stability.HEAT sim-ulations were conducted to validate the superior heat confinement in the programming region of the HfTe_(2)-based PCH device.Moreover,electrical measurements of the device demonstrated its outstanding performance,which was characterized by a low RESET current(∼1.6 mA),stable two-order ON/OFF ratio,and exceptional cycling endurance(∼2×10^(7)).The structural integrity of the HfTe_(2)confinement sub-layer was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy.The material properties,including electrical conductivity,cohesive energy,and electronegativity,substantiated these findings.Collectively,these results revealed that the HfTe_(2)-based PCH device can achieve significant improvements in performance and reliability compared with conventional PCRAM devices. 展开更多
关键词 Phase-change random-access memory Phase-change heterostructure thermal efficiency thermal stability Low-power operation
原文传递
Revealing the thermal stability of sodium-ion battery from material to cell level using combined thermal-gas analysis 被引量:1
7
作者 Anqi Teng Yue Zhang +9 位作者 Lihua Jiang Yue Zhang Hongbin Dang Chenchen Wang Zheng Fang Yong Liu Xuefeng Wang Huang Li Wenxin Mei Qingsong Wang 《Journal of Energy Chemistry》 2025年第4期838-849,共12页
The future large-scale application of sodium-ion batteries(SIBs)is inseparable from their excellent electrochemical performance and reliable safety characteristics.At present,there are few studies focusing on their sa... The future large-scale application of sodium-ion batteries(SIBs)is inseparable from their excellent electrochemical performance and reliable safety characteristics.At present,there are few studies focusing on their safety performance.The analysis of thermal stability and structural changes within a single material cannot systematically describe the complex interplay of components within the battery system during the thermal runaway process.Furthermore,the reaction between the battery materials themselves and their counterparts within the system can stimulate more intense exothermic behavior,thereby affecting the safety of the entire battery system.Therefore,this study delved into the thermal generation and gas evolution characteristics of the positive electrode(Na_(x)Ni_(1/3)Fe_(1/3)Mn_(1/3)O_(2),NFM111)and the negative electrode(hard carbon,HC)in SIBs,utilizing various material combinations.Through the integration of microscopic and macroscopic characterization techniques,the underlying reaction mechanisms of the positive and negative electrode materials within the battery during the heating process were elucidated.Three important results are derived from this study:(Ⅰ)The instability of the solid electrolyte interphase(SEI)leads to its decomposition at temperatures below 100℃,followed by extensive decomposition within the range of 100-150℃,yielding heat and the formation of inorganic compounds,such as Na_(2)CO_(3)and Na_(2)O;(Ⅱ)The reaction between NFM111 and the electrolyte constitutes the primary exothermic event during thermal abuse,with a discernible reaction also occurring between sodium metal and the electrolyte throughout the heating process;(Ⅲ)The heat production and gas generation behaviors of multi-component reactions do not exhibit complete correlation,and the occurrence of gas production does not necessarily coincide with thermal behavior.The results presented in this study can provide useful guidance for the safety improvement of SIBs. 展开更多
关键词 Sodium-ion battery safety thermal stability Gas generation DECOMPOSITION
在线阅读 下载PDF
Controllable Crystallization Optimizes Thermal Stability of A Novel Red-emitting Phosphor in Self-reduction System
8
作者 LU Shiwei DONG Rui +5 位作者 BAI Yuxing DU Haihong ZHENG Lirong WU Li KONG Yongfa XU Jingjun 《发光学报》 北大核心 2025年第2期285-295,共11页
Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan... Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability. 展开更多
关键词 photoluminescence lattice defects self-reduction thermal stability
在线阅读 下载PDF
Influence of W-doping on microstructure,mechanical and thermal properties of TiAlSiN coatings
9
作者 Xu SUN Wen HU +1 位作者 Li CHEN Jian-chuan WANG 《Transactions of Nonferrous Metals Society of China》 2025年第9期3020-3029,共10页
The effect of W-doping on the structure and properties of TiAlSiN coatings was investigated through scanning electron microscopy,X-ray diffraction,differential scanning calorimetry,and nanoindentation.Tungsten doping ... The effect of W-doping on the structure and properties of TiAlSiN coatings was investigated through scanning electron microscopy,X-ray diffraction,differential scanning calorimetry,and nanoindentation.Tungsten doping in the coatings forms both substitution solid solution of Ti and/or Al in TiAlN and W simple substance.W-addition improves the surface quality of the coatings.Ti_(0.46)Al_(0.45)Si_(0.09)N,Ti_(0.43)Al_(0.46)Si_(0.08)W_(0.03)N,and Ti_(0.41)Al_(0.46)Si_(0.07)W_(0.06)N present similar hardness of(29.1±0.4),(29.7±1.1),and(30.2±1.0)GPa,respectively.During annealing,Ti_(0.41)Al_(0.46)Si_(0.07)W_(0.06)N achieves peak hardness of(35.3±1.0)GPa at 1100℃,whereas those of Ti_(0.46)Al_(0.45)Si_(0.09)N and Ti_(0.43)Al_(0.46)Si_(0.08)W_(0.03)N are only(33.1±0.8)and(33.9±0.8)GPa at 1000℃.Furthermore,moderate W-addition(3 at.%)upgrades the oxidation resistance of TiAlSiN.After oxidation at 1000℃for 10 h,the oxide thicknesses of Ti_(0.46)Al_(0.45)Si_(0.09)N,Ti_(0.43)Al_(0.46)S_(i0.08)W_(0.03)N,and Ti_(0.41)Al_(0.46)Si_(0.07)W_(0.06)N are~0.70,~0.52,and~0.90μm,respectively. 展开更多
关键词 TiAlSiWN coating cathodic arc evaporation structural evolution HARDNESS thermal stability oxidation resistance
在线阅读 下载PDF
Hydrothermal carbon nanospheres as environmentally friendly,sustainable and versatile additives for water-based drilling fluids
10
作者 Han-Yi Zhong Shu-Sen Li +4 位作者 Da-Qi Li Jun-Bin Jin Chang-Zhi Chen Zheng-Song Qiu Wei-An Huang 《Petroleum Science》 2025年第5期1997-2019,共23页
In this study, hydrothermal carbon nanospheres(HCNs) were prepared by hydrothermal carbonization using glucose as the precursor, and introduced to improve the properties of water-based drilling fluid for the first tim... In this study, hydrothermal carbon nanospheres(HCNs) were prepared by hydrothermal carbonization using glucose as the precursor, and introduced to improve the properties of water-based drilling fluid for the first time. The variation in rheological and filtration characteristics of water-based drilling fluid with varying concentrations of HCNs were compared between the cases before and after thermal aging. The results demonstrated that HCNs had little influence on the rheological properties of bentonite base mud,but could effectively reduce its filtration loss after thermal aging at 220℃ For polymer-based drilling fluid, HCNs also exhibited minor influence on the rheology. The H-B model was the best fitting model for the rheological curves before thermal aging. After hot rolling at 220℃,the viscosity retention rate increased from 29% to 63%-90% with addition of HCNs, and the filtration loss decreased by 78% with 1.0w/v% HCNs. Meanwhile, the polymer-based drilling fluid with 0.5 w/v% HCNs maintained relatively stable rheology and low filtration loss after statically thermal aging at 200℃ for 96 h. For a bentonitefree water-based drilling fluid prepared mainly with modified natural polymers, the viscosity retention increased from 21% to 74% after hot rolling at 150℃ with 0.5 w/v% HCNs, and was further improved when HCNs and potassium formate were used in combination. The mechanism study revealed that,HCNs could trap dissolved oxygen, scavenge the free radicals and cross link with polymers, which prevented thermal oxidative degradation of polymers and improved the thermal stability of water-based drilling fluid. Meanwhile, HCNs could inhibit clay hydration and swelling in synergy with partially hydrolyzed polyacrylamide by physically sealing the micropores, contributing to shale formation stability.Furthermore, HCNs could effectively improve the lubrication and anti-wear performance of drilling fluid.This study indicated that HCNs could act as green, sustainable, and versatile additives in water-based drilling fluid. 展开更多
关键词 Water-based drilling fluid Hydrothermal carbon nanosphere Polymer degradation thermal stability Radical scavenger Sealing properties LUBRICATION
原文传递
A Novel Nano-Structured Die Steel with High Strength and High Thermal Stability
11
作者 Xinhao Li Jieli Ma +1 位作者 Yiren Wang Yong Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1591-1603,共13页
A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 n... A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃. 展开更多
关键词 Hot-work die steel Oxide-dispersion-strengthened NANO-STRUCTURE Core-shelled thermal stability
原文传递
Methyl Groups Pendant on Triphenylmethane Toward Modulating Thermal Stability and Dielectric Properties of the Crosslinkable Fluorinated Polyimide Films with High Transparency
12
作者 Wen Yang Liang Yuan +3 位作者 Kai Gong Ruo-Han Zhang Lan Lei Hui Li 《Chinese Journal of Polymer Science》 2025年第2期316-327,共12页
It is urgent to develop high-performance polyimide(PI)films that simultaneously exhibit high transparency,exceptional thermal stability,mechanical robustness,and low dielectric to fulfil the requirements of flexible d... It is urgent to develop high-performance polyimide(PI)films that simultaneously exhibit high transparency,exceptional thermal stability,mechanical robustness,and low dielectric to fulfil the requirements of flexible display technologies.Herein,a series of fluorinated polyimide films(FPIs)were fabricated by the condensation of 5,5′-(perfluoropropane-2,2-diyl)bis(isobenzofuran-1,3-dione)(6FDA)and the fluorinated triphenylmethane diamine monomer(EDA,MEDA and DMEDA)with heat-crosslinkable tetrafluorostyrene side groups,which was incorporated by different numbers of methyl groups pendant in the ortho position of amino groups.Subsequently,the FPI films underwent heating to produce crosslinking FPIs(C-FPIs)through the self-crosslinking of double bonds in the tetrafluorostyrene.The transparency,solvent resistance,thermal stability,mechanical robustness and dielectric properties of FPI and C-FPI films can be tuned by the number of methyl groups and crosslinking,which were deeply investigated by virtue of molecular dynamics(MD)simulations and density functional theory(DFT).As a result,all the films exhibited exceptional optically colorless and transparent,with transmittance in the visible region of 450-700 nm exceeding 79.9%,and the cut-off wavelengths(λ_(off))were nearly 350 nm.The thermal decomposition temperatures at 5% weight loss(T_(d5%))for all samples exceeded 504℃.These films exhibited a wide range of tunable tensile strength(46.5-75.1 MPa).Significantly,they showed exceptional dielectric properties with the dielectric constant of 2.3-2.5 at full frequency(10^(7)-20 Hz).This study not only highlights the relationship between the polymer molecular structure and properties,but offer insights for balancing optical transparency,heat resistance and low dielectric constant in PI films. 展开更多
关键词 Crosslinkable fluorinated polyimide Methyl group Triphenylmethane TRANSPARENCY thermal stability Low dielectric constant
原文传递
Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber
13
作者 Guizhi Zhu Junrui Tan +5 位作者 Longfei Tan Qiong Wu Xiangling Ren Changhui Fu Zhihui Chen Xianwei Meng 《Chinese Chemical Letters》 2025年第1期381-386,共6页
High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce... High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce-doped Co-metal-organic framework(Ce Co-MOF)in dendritic mesoporous organosilica nanoparticles(DMONs@Ce Co-MOF,denoted as DCCM)to prepare a novel antioxidant that exhibit outstanding thermal stability.Dendritic mesoporous organosilica nanoparticles(DMONs)effectively alleviated the incompatibility of Ce Co-MOF in the polymer matrix,and the effective scavenging of free radicals was attributed to the various oxidation states of metal ions in Ce Co-MOF.Surprising,by adding only0.5 phr(parts per hundred of rubber)of DMONs@Ce Co-MOF to silicone rubber,(SR),the retention rate of tensile strength increased from 37.3%to 61.6%after aging 72 h at 250℃,and the retention rate of elongation at break of DCCM/SR1 composites reached 68%,which was 5.43 times of SR.The strategy of anchoring MOFs on the surface of silica also provides a viable method for preparing effective compound functionalized rubber antioxidant. 展开更多
关键词 Mesoporous organosilica nanoparticles Silicone rubber Metal-organic framework ANTIOXIDANTS thermal stability thermal oxidative degradation
原文传递
Enhanced energy-storage performances and thermal stability in BNT-LST-based ceramics by tuning domain configuration and bandgap
14
作者 Fang-Fang Zeng Qian-Si Zhang +10 位作者 Shi-Dong Zhang Qi Sun Hui-Tao Guo Qing-Quan Xiao Quan Xie Li Zhang Gui-Fen Fan Yun-Peng Qu Jia Liu Qi-Bin Liu Yun-Lei Zhou 《Rare Metals》 2025年第5期3313-3323,共11页
Low energy-storage density and inferior thermal stability are a long-term obstacle to the advancement of pulse power devices.Herein,these concerns are addressed by improving bandgap and fabricating polar nanoregions,a... Low energy-storage density and inferior thermal stability are a long-term obstacle to the advancement of pulse power devices.Herein,these concerns are addressed by improving bandgap and fabricating polar nanoregions,and the superior high efficiency of~86.7%,excellent thermal stability of~2%(31-160℃)and energy density of~6.8 J·cm^(-3)are achieved in Bi_(0.5)Na_(0.5)TiO_(3)-La_(0.1)Sr_(0.8)TiO_(3)-δ-NaNbO_(3)ceramics.The high breakdown strength(460 kV·cm^(-1))is ascribed to the broadened bandgap and refined grain.Slim ferroelectric loops originate from the construction of polar nanoregions(PNRs)in a pseudocubic matrix,and transmission electron microscope and piezoelectric force microscope measurements reveal the occurrence of PNRs.The phase-field stimulation and UV-Vis spectrophotometer measurement reveal that the increased grain boundary density and bandgap are beneficial for promoting breakdown strength.The strategy provides an efficient path to prepare Bi_(0.5)Na_(0.5)TiO_(3)La_(0.1)Sr_(0.8)TiO_(3)-δ-based ceramics with superior efficiency,high energy density and outstanding thermal stability. 展开更多
关键词 Energy density thermal stability PNRs Bandgap Phase-field stimulation
原文传递
Nitrogen enhances microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic stainless steel
15
作者 Yuanfei Su Shuzhan Zhang +3 位作者 Shengxuan Jiao Xianbo Shi Wei Yan Lijian Rong 《Journal of Materials Science & Technology》 2025年第23期270-289,共20页
High-temperature long-term microstructural instability is an urgent problem to be solved for high-silicon Fe-Cr-Ni austenitic stainless steel.In this study,we propose a novel strategy to improve the microstructural th... High-temperature long-term microstructural instability is an urgent problem to be solved for high-silicon Fe-Cr-Ni austenitic stainless steel.In this study,we propose a novel strategy to improve the microstructural thermal stability of Si-modified Fe-Cr-Ni austenitic steels via N doping.The microstructural evolution behaviors of N-free and N-doping steels were systematically investigated during aging at 783-923 K.The findings indicate that N doping results in substantial grain refinement and improves the strength of the steel.Importantly,it is found that N doping inhibits the premature segregation of Ni,Cr,Si,and Mo at grain boundaries by reducing their diffusion coefficients,thereby suppressing the generation of intergranular M_(6) C carbides during aging at 783 K,achieving superior thermal stability.In contrast,N-free steel exhibits microstructural instability due to theγ→M_(6) C+ferrite transformation during aging at 783 K.At 823 and 873 K,it is concluded that the diffusion of alloying elements accelerates,resulting in the formation of M_(6) C and ferrite in N-doping steel and subsequent microstructural instability.It contributes to a decrease in impact toughness,as microcracks tend to form at the ferrite domain and M_(6) C/ferrite interface with high strain concentration.Notably,when aged at 923 K,N-doping steel exhibits a cellular structure composed of M_(23) C_(6) and M_(6) C carbonitrides,with Nb(C,N)serving as the nucleation site within the grains.This differs from the intragranularχ-phase observed in N-free steel,as the nucleation driving force of theχ-phase decreases with an increasing N content.The study offers valuable insights for the development of fastener materials intended for utilization in lead-cooled fast reactors. 展开更多
关键词 Si-modified austenitic steel N-DOPING thermal stability Strengthening Fracture behavior
原文传递
Garnet-type cyan-green-emitting SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12):Ce^(3+) phosphor with high quantum efficiency,thermal stability,and water resistance for blue-excited WLEDs
16
作者 Jing Yan Junyu Hong +4 位作者 Xiaohui Li Bojana Milićević Lei Zhou Chunyan Jiang Mingmei Wu 《Journal of Rare Earths》 2025年第10期2100-2107,I0002,共9页
Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-d... Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-doped SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12)(SLGASO)phosphor that significantly compensates for the absence of cyan light,known as the"cyan cavity".The SLGASO host crystallizes into a cubic structure with the Ia3d space group.The cell parameters were determined using Rietveld refinement.Under430 nm blue excitation,SLGASO:Ce^(3+)emits intense cyan-green light in the 450-700 nm wavelength range.The representative SLGASO:0.07Ce^(3+)phosphor has an internal quantum efficiency(IQE)of 95.4%and excellent thermal stability,remaining 92.7%of its initial emission intensity at 152℃.After 155 d of immersion in water,the luminous intensity of SLGASO:0.07Ce^(3+)remains constant,confirming its waterproofness.Furthermore,a pc-WLED device with luminous efficiency(LE)of 101.58 lm/W,color rendering index(Ra)of 91,correlated color temperature(CCT)of 4536 K,and Commission Internationale de L'Eclairage(CIE)chromaticity coordinates of(0.3555,0.3390)was fabricated by combining asprepared cyan-green-emitting SLGASO:0.07Ce^(3+),yellow-emitting Y_(3)Al_(5)O_(12):Ce^(3+)(YAG:Ce^(3+)),and redemitting(Ca,Sr)AlSiN_(3):Eu^(2+)phosphors,as well as a 450 nm blue chip.These findings indicate that SLGASO:0.07Ce^(3+)phosphor can bridge the cyan gap and improve the performance of as-fabricated fullvisible-spectrum WLEDs. 展开更多
关键词 Cyan-green phosphor Photoluminescence thermal stability Water resistance White light-emitting diodes(WLEDs) Rare earths
原文传递
Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films
17
作者 Shi Li Wenshuai Zhao +4 位作者 Yong Qi Wenbin Niu Wei Ma Bingtao Tang Shufen Zhang 《Chinese Chemical Letters》 2025年第9期407-412,共6页
Dye-based color films are increasingly considered as viable alternatives to pigment-based color films in complementary metal-oxide-semiconductor(CMOS) image sensors.Herein,a series of azo dyes utilizing 5-methyl-2-phe... Dye-based color films are increasingly considered as viable alternatives to pigment-based color films in complementary metal-oxide-semiconductor(CMOS) image sensors.Herein,a series of azo dyes utilizing 5-methyl-2-phenyl-4-(2-phenylhydrazono)-2,4-dihydro-3H-pyrazol-3-one as the coupling component and aromatic amines with various electron-withdrawing groups(NO_(2),CN,Br) as diazo components were designed and synthesized.The presence of intermolecular hydrogen bonding between the hydrogen atom on the N-H group and the oxygen atom of the C=O group of the hydrazo structure facilitates the formation of a stable six-membered ring.Additionally,the electron-withdrawing groups in the diazo component further stabilize this hydrogen-bonded structure.As a result,these azo dyes(P-2,P-3,P-4,P-5)exhibit not only excellent light stability but also ultra-highly thermal stability(T_(d)> 260℃).Therein,the synthesized dyes P-2 and P-3 with great bright yellow color(~400 nm),proper solubility(~6.00g/100 g)were selected to make for color films.And their dye-based color films displayed ultra-highly thermal and light stability(color difference ΔE<3).Notably,the increased planarity of the molecular structure by hydrogen bonding for the novel dyes ensures a balance between high transmittance(>90%) in the 550-780 nm wavelength range and the solvent resistance of the dye-based color films.This work contributes to the advancement of next-generation smart CMOS devices and offers valuable insights into the design of azo dyes for applications in the field of organic electronics. 展开更多
关键词 Visual identification Azo dyes Color films thermal stability Hydrogen bonding
原文传递
Improving long-term thermal stability in twin-roll cast Al-Mg-Si-Cu alloys by optimizing Mg/Si ratios
18
作者 Shao-You Zhang Yuan-Ting Mo +3 位作者 Zhen-Ming Hua Xu Liu Ze-Tian Liu Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第3期164-175,共12页
Achieving high thermal stability in the 6xxx series alloys remains a challenging task,which limits their engineering application.Herein,Al-Mg-Si-Cu alloys with various Mg/Si ratios(0.5,1,2,and 4)were fab-ricated by tw... Achieving high thermal stability in the 6xxx series alloys remains a challenging task,which limits their engineering application.Herein,Al-Mg-Si-Cu alloys with various Mg/Si ratios(0.5,1,2,and 4)were fab-ricated by twin-roll casting(TRC),and the microstructure evolution and mechanical properties during long-term thermal exposure of 150℃/1000 h were studied.The results disclosed that alloys with a high Mg/Si ratio exhibited better thermal stability.The alloys with the Mg/Si ratio of 2(Mg/Si∼2)achieved a stable high yield strength of∼330 MPa and meanwhile maintained a satisfactory fracture elongation(>10%)throughout the thermal exposure process.This excellent thermal stability can be attributed to the microstructure consisting of high-density L phases and fineα-AlFeSi phases,which was related to the optimized Mg/Si ratio.Specifically,L phases were dominated in peak-aged Mg/Si∼2 alloys,while the counterparts in alloys with the Mg/Si ratio of 1(Mg/Si∼1)wereβ’’and Q’phases.During the thermal exposure process,the L phases remained stable without coarsening,which was mainly due to the high coherence and low interfacial energy of the L-matrix interface.Meanwhile,the main Fe-containing phases in Mg/Si∼2 and Mg/Si∼1 alloys were fine near-spheroidalα-AlFeSi and large-size needle-likeβ-AlFeSi,re-spectively,which lead to a better ductility of Mg/Si∼2 alloys.This work may provide a strategy for the preparation of 6xxx series alloys with high thermal stability. 展开更多
关键词 Aluminum alloy Twin-roll casting thermal stability Microstructure evolution Mechanical properties
原文传递
Role of Grain Boundary Segregation and Nanoprecipitation on the Tensile Properties and Thermal Stability of Dilute Mg-0.7Al-0.3Ca(wt%)Alloy
19
作者 Xiaoqing Liu Xiaoguang Qiao +5 位作者 Xiaoye Qiu Xianke Zhang Chubin Yang Dongdong Zhang Xiurong Zhu Mingyi Zheng 《Acta Metallurgica Sinica(English Letters)》 2025年第12期2165-2178,共14页
A dilute Mg-0.7Al-0.3Ca(AX0703,wt%)alloy with high strength is developed via conventional low-temperature extrusion,with tensile yield strength of 376 MPa and elongation of 5.3%.As-extruded AX0703 sample exhibits the ... A dilute Mg-0.7Al-0.3Ca(AX0703,wt%)alloy with high strength is developed via conventional low-temperature extrusion,with tensile yield strength of 376 MPa and elongation of 5.3%.As-extruded AX0703 sample exhibits the bimodal grain structures consisting of dynamically recrystallized(DRXed)ultrafine grains and coarse non-DRXed grains with strong basal texture,which contributes to the strength.The numerous nano-Al2Ca phases were developed in non-DRXed grains during extrusion,which not only generates the remarkable precipitation hardening effect,but also favors the improved thermal stability by retarding recrystallization process.Also,it is found that co-segregations of Al-Ca solutes at DRXed grain boundaries hinder grain growth during heat treatment at 300℃,contributing to the thermal stability of as-extruded AX0703 alloy.This work provides valuable insights into the development of high-strength and low-alloyed Mg extrusions with high thermostability. 展开更多
关键词 Mg-Al-Ca alloy Microstructure Mechanical properties thermal stability Grain boundary segregation
原文传递
Unprecedented energetic zwitterion integrating thermal stability,high energy density and low sensitivity:Overcoming performance trade-offs in conventional energetic materials
20
作者 Bojun Tan Xiong Yang +13 位作者 Jinkang Dou Jian Su Jing Zhang Siwei Song Changwei Tang Minghui Xu Shu Zeng Wenjie Li Jieyu Luan Gen Zhang Qinghua Zhang Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 2025年第10期220-229,共10页
The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic el... The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering. 展开更多
关键词 Energetic materials Triazolo-tetrazine framework High energy density thermal stability Solid propellants
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部