期刊文献+
共找到9,250篇文章
< 1 2 250 >
每页显示 20 50 100
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
1
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
Simulation and Thermal Runaway Experiment Study on Immersion and Cold Plate Cooling with 4680 Cylindrical Battery Pack
2
作者 Wan Fulai Zhao Qingliang +2 位作者 Luo Yitao Zhang Feng Li Guangjun 《汽车技术》 北大核心 2025年第10期10-20,共11页
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli... This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.” 展开更多
关键词 Immersion cooling 4680 battery thermal runaway Numerical simulation
在线阅读 下载PDF
Modeling and Simulation of the Thermal Behavior of Nubian Vault Walls
3
作者 Karim Toussakoe Alidou Maiga +8 位作者 Adjigkiga Banouga Emmanuel Ouédraogo Nébon Bado Bouto Kossi Imbga Salifou Ouédraogo Abdoulaye Compaore Adélaide Lareba Ouédraogo Florent Pèlèga Kieno Sie Kam 《Journal of Energy and Power Engineering》 2025年第3期100-105,共6页
In this study,we simulated the thermal behavior of the mud-brick walls of a Nubian vault.We used EnergyPlus software for the simulation.The results obtained showed that the indoor temperature varies from 25.5℃ to 26.... In this study,we simulated the thermal behavior of the mud-brick walls of a Nubian vault.We used EnergyPlus software for the simulation.The results obtained showed that the indoor temperature varies from 25.5℃ to 26.5℃ for the period of January 2018.It varies from 33.2℃ to 33.6℃ with an average value of 33.1℃ for the month of April 2018.For the period of July 2018,it varies from 30.3℃ to 32.2℃ with an average value of 31.2℃..Relative humidity for the period of July ranged from 62.3%to 73.5%,with an average value of 67.9%.The simulation enabled us to compare simulated and measured temperature and humidity values.We found that the level of thermal comfort in the Nubian vault is acceptable in both cool and hot periods.In view of these results,we can say that the Nubian vault is an architecture suited to our climate.The technical concept of the Nubian vault is adapted to the climatic conditions and traditional know-how of the Sahel.We also found that the use of raw earth,a locally available material,and the Nubian vault architectural process,contribute to thermal comfort and a reappropriation of local and adapted know-how. 展开更多
关键词 thermal simulation architectural technique TEMPERATURE walls thermal comfort
在线阅读 下载PDF
Hybrid CO_(2) thermal system for post-steam heavy oil recovery:Insights from microscopic visualization experiments and molecular dynamics simulations
4
作者 Ning Lu Xiaohu Dong +4 位作者 Haitao Wang Huiqing Liu Zhangxin Chen Yu Li Deshang Zeng 《Energy Geoscience》 2025年第2期233-248,共16页
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments... The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR. 展开更多
关键词 Heavy oil Hybrid CO_(2)thermal system Microscopic visualization experiment Molecular dynamics simulation Microscopic mechanism
在线阅读 下载PDF
Simulation of an aircraft thermal management system based on vapor cycle response surface model 被引量:1
5
作者 Haodong LIU Hongsheng JIANG +3 位作者 Sujun DONG Longxian XUE Yongji LIU Jianjun WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期64-77,共14页
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o... The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design. 展开更多
关键词 thermal management sys-tem Vaporcycle Response surface model Dynamic simulation MONTECARLO
原文传递
Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles
6
作者 Haris Alam Zuberi Madan Lal +2 位作者 Amol Singh Nurul Amira Zainal Ali J.Chamkha 《Computer Modeling in Engineering & Sciences》 2025年第2期1839-1864,共26页
Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical s... Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale.Motivated by the imperative of enhancing patient outcomes,a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery,focusing on the effects of copper and alumina nanoparticles,is conducted.The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles,considering the influence of a magnetic field,thermal radiation,and various flow parameters.The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using the 4th order collocation method,bvp4c module in MATLAB.This approach obtains velocity and temperature profiles,revealing the impact of relevant parameters crucial in the biomedical field.The findings of this study underscore the significance of understanding blood flow dynamics in stenosed arteries and the potential benefits of utilizing copper and alumina nanoparticles in treatment strategies.The incorporation of nanoparticles introduces novel avenues for enhancing therapeutic interventions,particularly in mitigating the effects of stenosis.The elucidation of velocity and temperature profiles provides valuable insights into the behavior of blood flow under different conditions,thereby informing the development of targeted biomedical applications.The arterial curvature flow parameter influences temperature profiles,with increased parameters promoting more efficient heat dissipation.The elevated values of Prandtl number and thermal radiation parameter showcase the diminished temperature profiles,indicating stronger dominance of momentum diffusion over thermal diffusion and radiative heat transfer mechanism.Sensitivity analysis of the pertinent physical parameters reveals that the Prandtl number has the most significant impact on blood flow dynamics.A statistical analysis of the present results and existing literature has also been included in the study.Overall,this research contributes to advancing our understanding of vascular health and lays the groundwork for innovative approaches in stenosis treatment and related biomedical fields. 展开更多
关键词 Blood flow simulation STENOSIS copper and alumina nanoparticles thermal radiation curvature parameter
暂未订购
A conductivity model for hydrogen based on ab initio simulations
7
作者 Uwe Kleinschmidt Ronald Redmer 《Matter and Radiation at Extremes》 2025年第4期58-69,共12页
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp... We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes. 展开更多
关键词 molecular dynamics simulations electrical thermal conductivity CONDUCTIVITY density functional theoryon interpolation formulas conductivity model extended ab initio data setwe spitzer ziman theorywe
在线阅读 下载PDF
Cold filament frontogenesis and frontolysis induced by thermal convection turbulence using large eddy simulation
8
作者 Zewen Wu Guojing Li +1 位作者 Yunkai He Jintuan Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期26-34,共9页
The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the directio... The frontogenetic processes of a submesoscale cold filament driven by the thermal convection turbulence are studied by a non-hydrostatic large eddy simulation.The results show that the periodic changes in the direction of the cross-filament secondary circulations are induced by the inertial oscillation.The change in the direction of the secondary circulations induces the enhancement and reduction of the horizontal temperature gradient during the former and later inertial period,which indicates that the frontogenetical processes of the cold filament include both of frontogenesis and frontolysis.The structure of the cold filament may be broken and restored by frontogenesis and frontolysis,respectively.The magnitude of the down-filament currents has a periodic variation,while its direction is unchanged with time.The coupling effect of the turbulent mixing and the frontogenesis and frontolysis gradually weakens the temperature gradient of the cold filament with time,which reduces frontogenetical intensity and enlarges the width of cold filament. 展开更多
关键词 cold filament FRONTOGENESIS FRONTOLYSIS thermal convection turbulence large eddy simulation
在线阅读 下载PDF
Development simulation in Gucheng County, Hebei Province: Comparative study of the thermal storage development of clastic and carbonate rocks
9
作者 Xiaohong Liu Jinxia Liu +2 位作者 Zhaoqing Ma Yuxing Wang Hui Zhang 《Natural Gas Industry B》 2024年第1期95-105,共11页
There are two sets of thermal reservoirs with different rock types in the Gucheng geothermalfield of Hebei Province,namely the Ordovician fractured carbonate thermal reservoir and the Neogene Guantao sandstone thermal... There are two sets of thermal reservoirs with different rock types in the Gucheng geothermalfield of Hebei Province,namely the Ordovician fractured carbonate thermal reservoir and the Neogene Guantao sandstone thermal reservoir,each developed using independent well networks.The energy demand per unit area in the region is high,and the existing geothermal development methods cannot meet the regional energy demand.For this type of block,combined with the development characteristics of different types of thermal reservoirs,numerical simulation methods were used to study the geothermal development trends of Ordovician fractured carbonate reservoirs and Neogene Guantao Formation sandstone reservoirs.When simulating sandstone thermal storage,priority should be given to demonstrating the optimal rechargeflow rate,while in simulating carbonate thermal storage,the focus should be on considering the influence of fracture development direction on development trends.Through numerical simulation of thermal storage development and combined with well network design,the optimal well spacing,production reinjectionflow rate,and reinjection temperature for two sets of thermal reservoirs developed using the same well network were determined.It is predicted that the average heatflow in the study can increase by 47.8%.This study presents reasonable development technical countermeasures to maximize the heating capacity of the geothermal development zone and provides an effective reference for the efficient development of similar geothermal resources in the Bohai Bay Basin. 展开更多
关键词 Geothermal field Multi-layer development Combined productioneinjection technology thermal reservoir numerical simulation Geothermal heating
在线阅读 下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
10
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
在线阅读 下载PDF
Analysis and numerical simulation of indoor thermal environments in some university classrooms
11
作者 闫丙宏 杨华 孙春华 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期262-265,共4页
In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants ... In order to study the indoor thermal environments in university classrooms in Tianjin,a field study and a questionnaire survey for a main teaching building are carried out.First,the thermal sensations of participants in the typical classrooms are studied by 180 questionnaires.Then,based on the measured data,the temperature changes in the classrooms during a year are simulated by the DeST software.The results show that the indoor thermal environments in the northern classrooms on the first floor are better than those in other classrooms.And the measurement results accord with the simulation results.These results can be used as a reference for the study of the indoor thermal environments in other seasons. 展开更多
关键词 university classroom indoor thermal environment field study DeST simulation
在线阅读 下载PDF
Physical,mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant 被引量:5
12
作者 Wenbin Han Yan Zhou +2 位作者 Lixiong Cai Cheng Zhou Lieyun Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1243-1257,共15页
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th... Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases. 展开更多
关键词 Lunar base Lunar regolith simulant Vacuum sintering Physical properties Mechanical properties thermal properties
在线阅读 下载PDF
Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity 被引量:9
13
作者 Guo-Dong Zhang Lin Fan +3 位作者 Lan Bai Min-Hui He Lei Zhai Song Mo 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第12期1394-1402,共9页
The mesoscopic simulation technique was applied to describe the phase separation behavior ofpolyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulatio... The mesoscopic simulation technique was applied to describe the phase separation behavior ofpolyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid) (PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend fihns containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached 1,16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway. 展开更多
关键词 Polyimide films Boron nitride Mesoscopic simulation thermal conductivity
原文传递
Simulation of landslide run-out by considering frictional heating and thermal pressurization 被引量:4
14
作者 LIU Wei HE Si-ming HE Zi-lu 《Journal of Mountain Science》 SCIE CSCD 2019年第1期122-137,共16页
Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In... Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In this work, this mechanism is combined with a depth-averaged model to simulate the long runout of landslides in the condition of deformation. Some important factors that influence frictional heating and thermal pressurization within the shear zone are further considered, including velocity profile and pressurization coefficient. In order to solve the coupled equations, a combined computational method based on the finite volume method and quadratic upwind interpolation for convective kinematics scheme is proposed. Several numerical tests are performed to demonstrate the feasibility of the computational scheme, the influence of thermal pressurization on landslide run-out, and the potential of the model to simulate an actual landslide. 展开更多
关键词 LANDSLIDE Frictional HEATING thermal PRESSURIZATION Numerical simulation
原文传递
Numerical Simulation on Thermal Stress of Large-scale Bearing Roller during Heating Process of Final Heat Treatment 被引量:4
15
作者 Li Yongjun, Pan Jiansheng, Zhang Weimin, Gu Jianfeng, Hu Mingjuan Open Lab of the Educational Ministry for High Temperature Material & Tests, SJTU, Shanghai, 200030 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期347-350,共4页
hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that... hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that two stress peaks appeared during heating process and the second stress peak was higher than the first. If the preheating time was elongated, the second stress peak was reduced distinctly. Therefore, the pre-heating time should be elongated suitably to ensure safety in the practical manufacture process. 展开更多
关键词 Numerical simulation NON-LINEAR FEM Heat Treatment thermal Stress
在线阅读 下载PDF
Numerical Simulation of Transient Thermal Stress Field for Laser Metal Deposition Shaping 被引量:3
16
作者 LONG Risheng~(1,2) LIU Weijun~1 (1.Advanced Manufacture Lab,Shenyang Institute of Automation,Shenyang 110016,China 2.Graduate School,Chinese Academy or Sciences,Beijing 100039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1025-1030,共6页
To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o... To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS. 展开更多
关键词 LMDS FEA TRANSIENT thermal STRESS field NUMERICAL simulation
在线阅读 下载PDF
nfluences of superheat and cooling intensity on macrostructure and macrosegregation of duplex stainless steel studied by thermal simulation 被引量:12
17
作者 Hong-gang Zhong Xiang-ru Chen +3 位作者 Yan-jie Liu Zhi-qiang Wei Hai-feng Yu Qi-jie Zhai 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第9期1125-1132,共8页
The influences of superheat and cooling intensity on macrostructure and macrosegregation of one new kind duplex stainless steel(DSS)were studied.Thermal simulation equipment was applied to prepare samples,which could ... The influences of superheat and cooling intensity on macrostructure and macrosegregation of one new kind duplex stainless steel(DSS)were studied.Thermal simulation equipment was applied to prepare samples,which could reproduce the industrial processes of DSS manufactured by a vertical continuous slab caster.Macrostructure and macrosegregation were analyzed using the digital single lens reflex and laser-induced breakdown spectroscope(LIBSOPA-200),respectively.The percentage of both chill zone and center equiaxed zone increases with the superheat decreasing,while that of the columnar zone decreases.There is only equiaxed grain existing as the superheat is 10 and 20℃.The lower the superheat is,the coarser the gain size is.High cooling intensity in mold could remarkably decrease the chill zone length and refine the grains in chill zone and center equiaxed zone.The influences of cooling intensity on macrosegregation are greater than those of superheat.The macrosegregation of Si,Mn and Cr is slightly dependent on superheat,while that of Cu,Mo and Ni changes greatly with superheat increasing. 展开更多
关键词 Continuous casting SOLIDIFICATION thermal simulation Duplex stainless steel MACROSEGREGATION
原文传递
Development of thermal simulation system for heavy section ductile iron solidification 被引量:4
18
作者 Z.H.Li H.Y.Geng Y.X.Li 《China Foundry》 SCIE CAS 2004年第S1期25-28,共4页
A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate t... A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively. 展开更多
关键词 SOLIDIFICATION thermal simulation heavy section ductile iron
在线阅读 下载PDF
Study on Thermal Simulation of Solidification in Heavy Section Ductile Iron 被引量:5
19
作者 Zhenhua LI Yanxiang LI Huiyuan GENG Jianjun CHEN Chunyan ZHOU Junfa CHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期122-124,共3页
Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system success... Using an artificial intelligent instrument and a computer feedback control method, a new thermal simulation systemis studied. Based on numerical simulation of casting solidification, a sample in the new system successfully simulatedthe solidification of heavy section ductile iron. The results show that the new thermal simulation system is accurateand reliable. Not only cooling curve but also graphite in the center of the thermal sample and the heavy sectionductile iron is identical. Realization of accurate thermal simulation of solidification in heavy section ductile iron willbe helpful for studying formation mechanism and controlling graphite degeneration in heavy section ductile iron. 展开更多
关键词 thermal simulation HEAVY SECTION DUCTILE iron SOLIDIFICATION
在线阅读 下载PDF
Effect of Chain Configuration on Thermal Conductivity of Polyethylene-A Molecular Dynamic Simulation Study 被引量:7
20
作者 Xiang Zhang Yu Wang +4 位作者 Ru Xi Bin Wu Peng Chen Jia Sheng Qian Hao-Jun Liang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第12期1418-1425,共8页
Stretched polyethylene(PE)fibers are found to have super high thermal conductivity,while the bulk of polyethylene is usually thermal insulating even for those with high crystalline degree.A molecular dynamic simulatio... Stretched polyethylene(PE)fibers are found to have super high thermal conductivity,while the bulk of polyethylene is usually thermal insulating even for those with high crystalline degree.A molecular dynamic simulation is deliberately carried out to examine the relationship between chain configuration and thermal conductivity of polyethylene.In this simulation study,independent and interacting PE chains being stretched are compared with the aim to find out the effect of stretching on thermal conductivity of PE.Various crystallization conditions for PE bulk are considered.It is found that heat transports predominately along the covalent chain rather than across chains in PE crystals.Our simulation study helps to understand experimental findings on thermal conductivity of PE at different states.W e also predict that amorphous PE may be super thermally conductive if chains are strictly stretched along heat flux. 展开更多
关键词 thermal conductivity Molecular dynamic simulation POLYETHYLENE Chain configuration
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部