期刊文献+
共找到333篇文章
< 1 2 17 >
每页显示 20 50 100
Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System 被引量:9
1
作者 JIN Chao WU Bo HU Youmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期33-41,共9页
Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the ... Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the temperature of critical machine elements irrespective of the operating conditions. But recent researches show that different sets of operating parameters generated significantly different error values even though the temperature of the machine elements generated was similar. As such, it is important to develop a generic thermal error model which is capable of evaluating the positioning error induced by different operating parameters. This paper ultimately aims at the development of a comprehensive prediction model that can predict the thermal characteristics under different operating conditions (feeding speed, load and preload of ballscrew) in a feed system. A novel wavelet neural network based on feedback linearization autoregressive moving averaging (NARMA-L2) model is introduced to predict the temperature rise of sensitive points and thermal positioning errors considering the different operating conditions as the model inputs. Particle swarm optimization(PSO) algorithm is brought in as the training method. According to ISO230-2 Positioning Accuracy Measurement and ISO230-3 Thermal Effect Evaluation standards, experiments under different operating conditions were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 by using Pt100 as temperature sensor, and the positioning errors were measured by Heidenhain linear grating scale. The experiment results show that the recommended method can be used to predict temperature rise of sensitive points and thermal positioning errors with good accuracy. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system based on varying operating conditions and machine tool characteristics. 展开更多
关键词 wavelet neural network NARMA-L2 model particle swarm optimization thermal positioning error feed system
在线阅读 下载PDF
A thermal flux-diffusing model for complex networks and its applications in community structure detection
2
作者 沈毅 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期637-643,共7页
We introduce a thermal flux-diffusing model for complex networks. Based on this model, we propose a physical method to detect the communities in the complex networks. The method allows us to obtain the temperature dis... We introduce a thermal flux-diffusing model for complex networks. Based on this model, we propose a physical method to detect the communities in the complex networks. The method allows us to obtain the temperature distribution of nodes in time that scales linearly with the network size. Then, the local community enclosing a given node can be easily detected for the reason that the dense connections in the local communities lead to the temperatures of nodes in the same community being close to each other. The community structure of a network can be recursively detected by randomly choosing the nodes outside the detected local communities. In the experiments, we apply our method to a set of benchmarking networks with known pre-determined community structures. The experiment results show that our method has higher accuracy and precision than most existing globe methods and is better than the other existing local methods in the selection of the initial node. Finally. several real-world networks are investigated. 展开更多
关键词 complex networks community structure thermal flux-diffusing model
原文传递
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool 被引量:7
3
作者 Qianjian GUO Shuo FAN +3 位作者 Rufeng XU Xiang CHENG Guoyong ZHAO Jianguo YANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期746-753,共8页
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea... Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools. 展开更多
关键词 Five-axis machine tool Artificial bee colony thermal error modeling Artificial neural network
在线阅读 下载PDF
Thermal Analysis of Vehicular Twin-Tube Hydraulic Gas-Precharged Shock Absorbers 被引量:5
4
作者 么鸣涛 顾亮 管继富 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期286-292,共7页
In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiati... In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiation were derived by applying certain laws governing heat transfer;an equivalent thermal resistance network model of a shock absorber undergoing heat transfer was established innovatively;moreover,the shock absorber’s thermodynamic model of control volume system was built by using the first law of thermodynamics;and finally,time required for shock absorber to reach thermal equilibrium and corresponding value of steady temperature were calculated by programming.In this way,a lower thermal equilibrium temperature will be achieved,hence help to improve reliability of shock absorbers in work by offering low ambient temperature,by reducing amplitudes and frequencies of external incentives exerted on them and by increasing flow rate of ambient air passing around them. 展开更多
关键词 shock absorber thermal resistance network model thermodynamic model thermal equilibrium
在线阅读 下载PDF
Fast Calculation Method of Energy Flow for Combined Electro-Thermal System and Its Application
5
作者 Shuxin Liu Sai Dai +2 位作者 Qiang Ding Linxian Hu Qixiang Wang 《Energy and Power Engineering》 2017年第4期376-389,共14页
In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the ... In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the combined electro-thermal system is proposed in this paper. Based on the detailed analysis of the topology structure of the heating network and its hydraulic and thermodynamic model, the forward-backward sweep method for the heat flow of the heating network is established, which is more suitable for the actual radial heating network. The electric and thermal coupling model for heating source, such as thermoelectric unit and electric boiler is established, and the heat flow of heating network and the power flow of power grid are calculated orderly, thus a fast calculation method for the combined electro-thermal system is formed. What’s more, a combined electro-thermal system with two-stage peak-shaving electric boiler is used as the example system. This paper validates the effectiveness and rapidity of this method through the example system, and analyzes the influence for the energy flow of combined electro-thermal system caused by the operating parameters such as the installation location of electric boiler, the outlet water temperature of heat source and the outlet flow rate, etc. 展开更多
关键词 COMBINED Electro-thermal System Energy FLOW RECURSIVE Heat FLOW model for Heating network Electric and thermal Coupling model
暂未订购
Response Surface Methodology and Artificial Neural Network Methods Comparative Assessment for Fuel Rich and Fuel Lean Catalytic Combustion 被引量:1
6
作者 Tahani S. Gendy Amal S. Zakhary Salwa A. Ghoneim 《World Journal of Engineering and Technology》 2021年第4期816-847,共32页
Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied cat... Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> and Pd/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> disc burners were located in the combustion domain and the experiments were accomplished under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (<i><span style="white-space:nowrap;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&oslash;</span></span></i>) of 0.75 and 0.25, respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners w<span style="white-space:normal;font-family:;" "="">as</span><span style="white-space:normal;font-family:;" "=""> scrutinized via measuring the mean temperature profiles in the radial direction at different discrete axial locations along with the flames. The RSM and ANN methods investigated the effect of the two operating parameters namely (<i>r</i>), the radial distance from the center line of the flame, and (<i>x</i>), axial distance along with the flame over the disc, on the measured temperature of the flames and predicted the corresponding temperatures beside predicting the maximum temperature and the corresponding input process variables. A three</span><span style="white-space:normal;font-family:;" "="">-</span><span style="white-space:normal;font-family:;" "="">layered Feed Forward Neural Network was developed in conjugation with the hyperbolic tangent sigmoid (tansig) transfer function and an optimized topology of 2:10:1 (input neurons:hidden neurons:output neurons). Also the ANN method has been exploited to illustrate </span><span style="white-space:normal;font-family:;" "="">the </span><span style="white-space:normal;font-family:;" "="">effects of coded <i>R</i> and <i>X</i> input variables on the response in the three and two dimensions and to locate the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of  & F_Ratio are 0.9181</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9809 & 634.5</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 3528.8 for RSM method compared to 0.9857</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9951 & 7636.4</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 24</span><span style="white-space:normal;font-family:;" "="">,</span><span style="white-space:normal;font-family:;" "="">028.4 for ANN method beside lower values </span><span style="white-space:normal;font-family:;" "="">for error analysis terms.</span> 展开更多
关键词 Catalytic Combustion Fuel Lean/Fuel Rich Noble Metals Burners thermal structure modelING Artificial Neural network Response Surface Methodology Feed Forward Neural network
在线阅读 下载PDF
形状记忆合金驱动的智能点阵精确变形设计及实时控制方法
7
作者 朱继宏 徐博 +4 位作者 张亚辉 侯杰 王骏 谷小军 张卫红 《航空制造技术》 北大核心 2025年第22期14-33,共20页
智能变体结构作为未来先进无人飞行器等装备研制的关键技术,其分布式主动变形结构可实现光滑连续与多自由度变形,是显著提升结构性能与任务适应性的有效手段。针对这一需求,提出了一种基于形状记忆合金驱动的智能点阵结构的创新设计与... 智能变体结构作为未来先进无人飞行器等装备研制的关键技术,其分布式主动变形结构可实现光滑连续与多自由度变形,是显著提升结构性能与任务适应性的有效手段。针对这一需求,提出了一种基于形状记忆合金驱动的智能点阵结构的创新设计与控制方案。首先,提出的拟热变形法可用于高效评估SMA驱动器的变形性能,通过仿真与试验验证该方法对智能点阵结构的变形性能分析具有5%以内的误差精度,并成功实现了其结构的多模式可控变形。进一步构建了以能耗优化为目标、变形精度为约束的分布式驱动设计模型,在翼型结构应用中仅需16.67%的全局能量即可实现8个控制点400 mm的高精度变形(误差<1%)。针对大规模结构的实时控制难题,采用BP神经网络实现了多自由度变形的精确预测与控制,该方法具有突出的普适性,可拓展至多种形式的SMA驱动形式及复合翼面等智能结构设计,为兼具力学性能与智能变形的新一代智能变体结构系统提供了新的解决方案。 展开更多
关键词 智能点阵结构 形状记忆合金 分布式驱动 拟热变形法 神经网络模型
在线阅读 下载PDF
Thermal Energy Collection Forecasting Based on Soft Computing Techniques for Solar Heat Energy Utilization System
8
作者 Atsushi Yona Tomonobu Senjyu 《Smart Grid and Renewable Energy》 2012年第3期214-221,共8页
In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative ener... In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data. 展开更多
关键词 NEURAL network Tree-Based model thermal ENERGY COLLECTION Forecasting Solar Heat ENERGY UTILIZATION SYSTEM
暂未订购
Comparative Appraisal of Response Surface Methodology and Artificial Neural Network Method for Stabilized Turbulent Confined Jet Diffusion Flames Using Bluff-Body Burners
9
作者 Tahani S. Gendy Salwa A. Ghoneim Amal S. Zakhary 《World Journal of Engineering and Technology》 2020年第1期121-143,共23页
The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabi... The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms. 展开更多
关键词 STABILIZED TURBULENT Flames BLUFF-BODY Burners thermal Structure modeling Artificial NEURAL network Response Surface Methodology Multi-Layer PERCEPTRON Feed Forward NEURAL network
在线阅读 下载PDF
轮毂电机多目标优化设计与温升估计
10
作者 高琢 李军求 +4 位作者 周阳 张小鹏 谭平 邱锰 朱家豪 《兵工学报》 北大核心 2025年第4期13-25,共13页
针对特种车辆电驱动系统高扭矩密度需求,为能够充分提升峰值扭矩能力和效率,降低扭矩波动,防止电机过热,提出了一种基于多物理场模型的轮毂电机多目标优化设计和温升估计方法。基于整车工况需求建立了轮毂电机电磁有限元模型和损耗模型... 针对特种车辆电驱动系统高扭矩密度需求,为能够充分提升峰值扭矩能力和效率,降低扭矩波动,防止电机过热,提出了一种基于多物理场模型的轮毂电机多目标优化设计和温升估计方法。基于整车工况需求建立了轮毂电机电磁有限元模型和损耗模型。采用非支配排序遗传算法Ⅱ实现轮毂电机峰值扭矩、扭矩波动、效率、绕组换热面积的多目标优化,得到优化后电机电磁关键结构参数与损耗特性。基于几何结构建立了包含轮毂电机在内的电动轮热网络温升估计模型,预测了轮毂电机典型工况温升及温度分布特性。通过温升台架实验对温升预测模型精度进行了验证。研究结果表明,优化后轮毂电机峰值扭矩提升5.2%,峰值扭矩效率提升1.15%,端部绕组预测温度与实验结果对比均方根误差不超过4.3℃,计算速度大幅提升。 展开更多
关键词 轮毂电机 多目标优化 热网络模型 温升估计
在线阅读 下载PDF
基于图计算的可重构电池网络能效提升与热安全管控
11
作者 党建 罗永春 +2 位作者 张旭 肖逗 贾嵘 《实验技术与管理》 北大核心 2025年第1期82-89,共8页
可重构电池系统凭借其能量信息耦合优势成为解决电化学储能“木桶效应”的一个有效手段。但其可用路径规划量会随着电池数目的增多而成倍增长,使得在路径选择时需要考虑不同拓扑结构和负载需求约束,从而使重构策略难以快速制定和应用。... 可重构电池系统凭借其能量信息耦合优势成为解决电化学储能“木桶效应”的一个有效手段。但其可用路径规划量会随着电池数目的增多而成倍增长,使得在路径选择时需要考虑不同拓扑结构和负载需求约束,从而使重构策略难以快速制定和应用。该文利用可重构电池网络与图的一致性,将电池网络动态控制问题转化为图的遍历寻优问题,提出了基于记忆化搜索的图深度优先遍历的重构电池网络能效提升及热安全管控策略,从而获取了满足拓扑约束条件的最优开关配置,并可排除温度异常的故障电池模组。最后,通过搭建可重构电池网络实验平台对该方法进行了验证。该研究结果能够为提高电池网络系统能效及安全性提供一定借鉴。 展开更多
关键词 可重构电池网络 路径规划 图模型 能效提升 热安全管控
在线阅读 下载PDF
Numerical Investigation of Thermal Behavior of CNC Machine Tool and Its Effects on Dimensional Accuracy of Machined Parts 被引量:1
12
作者 Erick Matezo-Ngoma Abderrazak El Ouafi Ahmed Chebak 《Journal of Software Engineering and Applications》 2024年第8期617-637,共21页
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in... The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%. 展开更多
关键词 CNC Machine Tool Dimensional Accuracy thermal Errors Error modelling Numerical Simulation Finite Element Method Artificial Neural network Error Compensation
在线阅读 下载PDF
基于神经网络的热负荷预测模型研究 被引量:1
13
作者 张庆环 韩天庆 +1 位作者 曹琦 赵亮 《热科学与技术》 北大核心 2025年第3期261-267,共7页
随着计算机技术的发展,大多数热电公司已经建立了平稳运行的网络系统,这些网络系统在运营管理工作中起到了关键作用。对于网络系统中形成的大量数据,怎样合理分析数据来更好地为企业服务已成为广受关注的问题。为了解决上述问题,本文基... 随着计算机技术的发展,大多数热电公司已经建立了平稳运行的网络系统,这些网络系统在运营管理工作中起到了关键作用。对于网络系统中形成的大量数据,怎样合理分析数据来更好地为企业服务已成为广受关注的问题。为了解决上述问题,本文基于大数据分析热用户的用热特点,并以某热电厂的大量历史数据为例,建立BP神经网络预测模型,预测热电厂蒸汽负荷。针对传统BP神经网络模型容易陷入局部最优解的问题,将小波理论与传统BP神经网络模型相结合,构建小波神经网络模型,提高对热电厂蒸汽负荷预测的准确度。 展开更多
关键词 大数据分析 用热特性 BP神经网络模型 小波神经网络模型
原文传递
基于火电厂源侧综合能源系统的数字孪生运维模型构建研究
14
作者 李洲 游筱辉 +2 位作者 徐舒涵 戴晓业 史琳 《发电设备》 2025年第6期367-374,共8页
建立准确、高效的火电厂源侧的综合能源系统模型,有助于优化系统管理过程,提高运行的安全性和经济性,是火电厂规划改造的重要参考。提出一种基于前馈神经网络的火电厂源侧综合能源系统数字孪生运维模型,该系统以火电机组为核心,在输入... 建立准确、高效的火电厂源侧的综合能源系统模型,有助于优化系统管理过程,提高运行的安全性和经济性,是火电厂规划改造的重要参考。提出一种基于前馈神经网络的火电厂源侧综合能源系统数字孪生运维模型,该系统以火电机组为核心,在输入端耦合生物质气化、垃圾气化、干化污泥3种可再生能源,在输出端供应冷、热、汽、电4种能源产品;利用物理模型给出的计算数据对前馈神经网络展开训练,计算其最优超参数,进而构建相应的神经网络模型,最终形成数字孪生模型。通过与物理模型对比验证,证实该数字孪生模型计算准确度良好、计算效率较高,能够在毫秒级时间尺度完成预测。 展开更多
关键词 火电厂 综合能源系统 前馈神经网络 数字孪生模型
在线阅读 下载PDF
复合圆筒型永磁直线作动器热网络模型与热性能研究
15
作者 冯云南 吴丽泽 +1 位作者 李焱鑫 卢琴芬 《电工技术学报》 北大核心 2025年第18期5854-5865,共12页
复合圆筒型永磁直线作动器(CTPMLA)集成了被动阻尼系统和圆筒型永磁直线同步电机,能提供1076 N持续推力和2754 N最大阻尼力,可应用于主动悬架系统。CTPMLA初级采用的实心铁心和槽口铝环,能在动子运动过程中感应涡流,产生的附加阻尼力增... 复合圆筒型永磁直线作动器(CTPMLA)集成了被动阻尼系统和圆筒型永磁直线同步电机,能提供1076 N持续推力和2754 N最大阻尼力,可应用于主动悬架系统。CTPMLA初级采用的实心铁心和槽口铝环,能在动子运动过程中感应涡流,产生的附加阻尼力增强了系统的阻尼性能,但也提高了温升。为了分析CTPMLA的热性能,该文提出了多节点热网络快速模型,其与电磁模型双向耦合,通过两者数据交互与不断迭代,更新温度、损耗、对流热阻和气隙热阻参数,计算了CTPMLA在不同工况下的稳态热性能。最后,一方面与三维温度场有限元耦合模型进行了对比;另一方面研制样机,进行了自然对流和强制对流两种工况下的温升测试,验证了该热网络快速模型的有效性。 展开更多
关键词 永磁直线作动器 阻尼环 热网络模型 双向耦合
在线阅读 下载PDF
基于改进DESN的火电机组出力预测模型 被引量:1
16
作者 王翔 王辉 +1 位作者 甘玮 张依依 《计算机仿真》 2025年第4期99-105,共7页
火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力... 火电机组在现代电力系统中承担着大量的调峰调频任务,通过运行参数建立出力预测模型有助于快速稳定地调整功率。提出一种改进的深度回声状态网络(Deep Echo State Networks,DESN)用于建立机组出力预测模型。该改进型具备可变的记忆能力以应对调整部分运行参数作用于机组出力变化存在的延时性,并根据运行参数聚类生成输入权重进一步挖掘运行参数与出力之间的映射信息。利用华北地区某火电机组不同工作状况下的两种数据集验证了模型效果。结果表明,改进得到的KM-VML-DESN相较于深度回声状态网络、多层感知机、长短期记忆网络等具备更强的预测性能。 展开更多
关键词 深度回声状态网络 循环神经网络 火电机组建模 出力预测
在线阅读 下载PDF
干式变压器绕组热点温度自动预测方法研究 被引量:2
17
作者 沈博 《自动化仪表》 2025年第6期73-76,82,共5页
干式变压器绕组所处环境较复杂、运行负载较大,极易出现因热点温度异常变化而导致的运行故障问题。因此,设计基于长短期记忆(LSTM)神经网络的干式变压器绕组热点温度自动预测方法。基于质量、动量和能量守恒定律,建立干式变压器流体温... 干式变压器绕组所处环境较复杂、运行负载较大,极易出现因热点温度异常变化而导致的运行故障问题。因此,设计基于长短期记忆(LSTM)神经网络的干式变压器绕组热点温度自动预测方法。基于质量、动量和能量守恒定律,建立干式变压器流体温度场方程。利用量化原则,将变压器内部的热源等效为运行的损耗值。根据干式变压器的几何特性计算变压器热阻,并根据等效理论构建干式变压器绕组热路模型。以绕组热路模型为基础,在LSTM神经网络中利用控制门调整热点温度预测输出值。将记忆单元状态与热点温度的输出值进行比较,以确定最优的温度自动预测结果。试验结果表明,所提方法能够精准预测干式变压器绕组热点温度,平均相对误差和均方根误差均较低。该方法的预测结果具有可靠性。 展开更多
关键词 干式变压器 自动预测 热点温度 热路模型 长短期记忆神经网络 绕组
在线阅读 下载PDF
间隙自然对流对单点接触热阻的影响研究
18
作者 秦佳佳 王安良 《工程热物理学报》 北大核心 2025年第4期1261-1269,共9页
本文数值模拟了受间隙介质自然对流作用下热流管模型的传热特性,采用一般计算方法和界面热阻网络模型计算扩散(或收缩)热阻,研究了尺寸、物性参数和边界条件对单点接触热阻的影响规律;进一步分析了半径比、高径比和气固导热系数比,三种... 本文数值模拟了受间隙介质自然对流作用下热流管模型的传热特性,采用一般计算方法和界面热阻网络模型计算扩散(或收缩)热阻,研究了尺寸、物性参数和边界条件对单点接触热阻的影响规律;进一步分析了半径比、高径比和气固导热系数比,三种无量纲因子对单点接触热阻的影响。结果表明:间隙存在气体介质时,在自然对流作用下单点接触热阻随半径比的变化规律与真空条件下变化趋势相似;因间隙介质传导和对流使得单点接触热阻小于相同工况的真空值,且半径比越小,介质漏热的影响越明显;当半径比为0.2时,对流作用下的无量纲扩散热阻值与真空环境下比较,相对减小超过15%。对一般工程条件,改变热流密度、热源温度和冷却温度,模拟的无量纲扩散热阻值的变化不超过3%,验证了模型的鲁棒性。通过非线性拟合出无量纲扩散热阻受三种无量纲因子影响的公式,对实际工程具有应用价值。 展开更多
关键词 自然对流 单点接触热阻 扩散热阻 收缩热阻 界面热阻网络模型
原文传递
基于SCSSA-BiLSTM的卧式加工中心主轴热误差预测建模
19
作者 赵添翼 汤赫男 +3 位作者 柏爽 周冉 徐方超 孙凤 《机床与液压》 北大核心 2025年第20期30-35,共6页
为进一步提升传统麻雀搜索算法的预测精度,针对某卧式加工中心主轴的热误差补偿问题,建立BiLSTM预测模型并引入麻雀搜索算法(SSA)与正余弦和柯西变异策略(SC)对模型进行优化。利用五点法测试多转速下主轴温度与热误差数据。以温升数据... 为进一步提升传统麻雀搜索算法的预测精度,针对某卧式加工中心主轴的热误差补偿问题,建立BiLSTM预测模型并引入麻雀搜索算法(SSA)与正余弦和柯西变异策略(SC)对模型进行优化。利用五点法测试多转速下主轴温度与热误差数据。以温升数据为输入,预测主轴热误差。结果表明:随着主轴转速提升,主轴温升与轴向热误差变化更加剧烈,各轴承位置温升变化趋势基本相同;径向热误差较小,且影响因素较多,因此误差补偿应主要考虑Z向热伸长。与SSA-BiLSTM模型、BiLSTM模型相比,优化后的SCSSA-BiLSTM模型预测拟合度最好,精度最高。在多工况下,SCSSA-BiLSTM模型的各项指标均高于其他两种模型且提升明显,证明其具有良好的泛化能力,为多工况下的热误差预测补偿提供了参考。 展开更多
关键词 主轴 热误差建模 BiLSTM神经网络 麻雀搜索算法 泛化能力
在线阅读 下载PDF
基于GA-BP的三坐标钻高速电主轴热误差建模研究
20
作者 梁林 张栋 +1 位作者 白永康 周浩光 《机床与液压》 北大核心 2025年第3期94-100,共7页
针对三坐标钻的高速电主轴非均匀温度场,提出一种基于遗传算法(GA)的BP神经网络建模方法。结合模糊聚类法和灰色关联分析法对三坐标钻高速电主轴的温度测点组合进行测量。通过分析按时间排列的电主轴温度测点序列和电主轴热误差序列,确... 针对三坐标钻的高速电主轴非均匀温度场,提出一种基于遗传算法(GA)的BP神经网络建模方法。结合模糊聚类法和灰色关联分析法对三坐标钻高速电主轴的温度测点组合进行测量。通过分析按时间排列的电主轴温度测点序列和电主轴热误差序列,确定神经网络的输入和输出参数,从而构建GA-BP高速电主轴热误差模型;在不同的高速电主轴转速下,将GA-BP神经网络模型、多元线性回归模型以及BP神经网络模型进行对比。结果表明:GA-BP神经网络热误差模型的预测精度优于多元线性回归法和BP神经网络建模方法,GA-BP神经网络模型在10000 r/min转速下的最大均方误差为0.0673μm,在12000 r/min转速下的最大残差为1.98μm。GA-BP热误差预测模型相较其他模型具有鲁棒性强、精度高的优点,该模型可以有效提高三坐标钻的加工质量。 展开更多
关键词 高速电主轴 GA-BP神经网络 热误差建模
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部