期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermal Error Modeling and Compensation Method for Spindle of Five-Axis CNC Machine Tools
1
作者 Dongjun He 《控制工程期刊(中英文版)》 2025年第2期1-6,共6页
Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding compo... Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding components,result in dimensional deviations that can lead to poor part quality and reduced precision in high-speed manufacturing processes.This paper explores thermal error modeling and compensation methods for the spindle of five-axis CNC machine tools.A detailed analysis of the heat generation,transfer mechanisms,and finite element analysis(FEA)is presented to develop accurate thermal error models.Compensation techniques,such as model-based methods,sensor-based methods,real-time compensation algorithms,and hybrid approaches,are critically reviewed.This study also discusses the challenges in real-time compensation and the integration of thermal error compensation with machine tool control systems.The objective is to provide a comprehensive understanding of thermal error phenomena and their compensation strategies,ultimately contributing to the enhancement of machining accuracy in advanced manufacturing applications. 展开更多
关键词 CNC Machine Tools thermal errors SPINDLE Finite Element Analysis thermal error modeling Compensation Techniques Real-Time Compensation
在线阅读 下载PDF
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool 被引量:7
2
作者 Qianjian GUO Shuo FAN +3 位作者 Rufeng XU Xiang CHENG Guoyong ZHAO Jianguo YANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期746-753,共8页
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea... Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools. 展开更多
关键词 Five-axis machine tool Artificial bee colony thermal error modeling Artificial neural network
在线阅读 下载PDF
Bayesian networks modeling for thermal error of numerical control machine tools 被引量:7
3
作者 Xin-hua YAO Jian-zhong FU Zi-chen CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1524-1530,共7页
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also... The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy. 展开更多
关键词 Bayesian networks(BNs) thermal error model Numerical control(NC)machine tool
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部