Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear d...Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .展开更多
Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transition...Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes.展开更多
This paper compares the flame acceleration in single-trial dual-detonation tubes triggered by a spark plug and non-thermal plasma igniter. The low-temperature plasma was generated by an in-house novel AC-driven dielec...This paper compares the flame acceleration in single-trial dual-detonation tubes triggered by a spark plug and non-thermal plasma igniter. The low-temperature plasma was generated by an in-house novel AC-driven dielectric barrier discharge igniter, which reduces the power supply requirements and was applied in the quiescent ignition of a single-trial detonation tube. Three different types of detonation mixtures were tested with flame propagation tracked by ion probes and pressure waves recorded by high-frequency pressure transducers. The flame propagation speeds were calculated and compared based on signals from the ion probes. The detonation combustion succeeded in the dual tubes, but the deflagration-to-detonation transition could be significantly accelerated by the plasma for all mixtures, as it was shortened by more than 50% compared to that of the spark plug. The present study provides a suitable technological approach for igniters of PDEs.展开更多
为研究长距离公路隧道电力电缆区在夏季机械通风条件下仍然存在的高温环境问题,以上海市G40长距离跨江隧道为研究对象,采用CFD模拟方法,探究电缆发热量、室外环境温度和通风量对电力电缆区温度场分布的影响规律,并提出适用于该隧道结构...为研究长距离公路隧道电力电缆区在夏季机械通风条件下仍然存在的高温环境问题,以上海市G40长距离跨江隧道为研究对象,采用CFD模拟方法,探究电缆发热量、室外环境温度和通风量对电力电缆区温度场分布的影响规律,并提出适用于该隧道结构的温度预测关联式,用于解决工程实践中面临的“高温区域覆盖范围如何界定”以及“下游温度超标临界条件如何判定”等关键问题。结果表明:1)在夏季机械排风工况下,电力电缆区的空气温度沿着隧道纵向呈现非线性增长趋势,表明气流驱动的热迁移现象显著;2)电缆发热量对隧道进排风温差呈现非线性增长特征,当电缆长期高负载运行时,电缆区排风温度将超过标准规定的安全阈值(≤40℃);3)降低隧道入口温度虽可减少排风温度,但会导致进排风温差扩大超出规范限值(≤10℃);4)通风量每增大87.81 m 3/s(即换气次数增大2次/h)可使排风温度降低约3.57℃,但过高的通风量会导致风机功耗激增,因此需要进一步研究通风策略以平衡降温效果与风机能耗之间的关系。展开更多
文摘Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .
基金support from the National Natural Science Foundation of China(22302137,52172221,52272229,51920105005)the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(ZZ2201)+1 种基金the Suzhou Key Laboratory of Advanced Photonic Materialsthe Collaborative Innovation Center of Suzhou Nano Science&Technology.
文摘Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes.
基金support of the National Natural Science Foundation of China(Nos.51176001 and 51676111)the Tsinghua University Initiative Scientific Research Program(No.2014Z05091)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
文摘This paper compares the flame acceleration in single-trial dual-detonation tubes triggered by a spark plug and non-thermal plasma igniter. The low-temperature plasma was generated by an in-house novel AC-driven dielectric barrier discharge igniter, which reduces the power supply requirements and was applied in the quiescent ignition of a single-trial detonation tube. Three different types of detonation mixtures were tested with flame propagation tracked by ion probes and pressure waves recorded by high-frequency pressure transducers. The flame propagation speeds were calculated and compared based on signals from the ion probes. The detonation combustion succeeded in the dual tubes, but the deflagration-to-detonation transition could be significantly accelerated by the plasma for all mixtures, as it was shortened by more than 50% compared to that of the spark plug. The present study provides a suitable technological approach for igniters of PDEs.
文摘为研究长距离公路隧道电力电缆区在夏季机械通风条件下仍然存在的高温环境问题,以上海市G40长距离跨江隧道为研究对象,采用CFD模拟方法,探究电缆发热量、室外环境温度和通风量对电力电缆区温度场分布的影响规律,并提出适用于该隧道结构的温度预测关联式,用于解决工程实践中面临的“高温区域覆盖范围如何界定”以及“下游温度超标临界条件如何判定”等关键问题。结果表明:1)在夏季机械排风工况下,电力电缆区的空气温度沿着隧道纵向呈现非线性增长趋势,表明气流驱动的热迁移现象显著;2)电缆发热量对隧道进排风温差呈现非线性增长特征,当电缆长期高负载运行时,电缆区排风温度将超过标准规定的安全阈值(≤40℃);3)降低隧道入口温度虽可减少排风温度,但会导致进排风温差扩大超出规范限值(≤10℃);4)通风量每增大87.81 m 3/s(即换气次数增大2次/h)可使排风温度降低约3.57℃,但过高的通风量会导致风机功耗激增,因此需要进一步研究通风策略以平衡降温效果与风机能耗之间的关系。