期刊文献+
共找到146,304篇文章
< 1 2 250 >
每页显示 20 50 100
Negative Thermal Transport and Giant Thermal Rectification Unveiled in a Periodic-Oscillating Temperature System
1
作者 Lei Zhao Yu Yang +1 位作者 Yan Zhou Lifa Zhang 《Chinese Physics Letters》 2025年第8期143-153,共11页
Thermal diodes,based on the thermal rectification effect,have demonstrated great promise for advanced thermal management.In previous studies,almost all thermal diodes were discussed under the condition of steady state... Thermal diodes,based on the thermal rectification effect,have demonstrated great promise for advanced thermal management.In previous studies,almost all thermal diodes were discussed under the condition of steady states,while the heat source of a practical thermal system often operates under dynamically fluctuating temperatures.Therefore,in this work,we employ finite element simulation to investigate transient thermal rectification behaviors in a well-built heterojunction which exhibits intrinsic thermal rectification effect under steady state.Unidirectional energy transport in the heterojunction system,decoupled from the steady-state temperature bias,is observed under a time-dependent fluctuating heat source.This phenomenon enables straightforward realization of both giant thermal rectification and negative thermal transport.Furthermore,a series of novel thermal regulation strategies are unveiled by adjusting the average temperature,frequency,and phase of the heat source.Our work not only deepens fundamental understanding of thermal regulation in time-dependent oscillating temperature systems but also uncovers many unexplored energy-saving thermal management strategies. 展开更多
关键词 thermal diodes thermal rectification effecthave thermal system intrinsic thermal recti finite element simulation advanced thermal managementin heat source thermal diodesbased
原文传递
Room Temperature Thermal Switching Based on Monolayer Boron Nitride
2
作者 Dingbo Zhang Ke Wang +2 位作者 Shuai Chen Yuxiang Ni Gang Zhang 《Chinese Physics Letters》 2025年第9期102-125,共24页
The research on materials capable of manipulating thermal conductivity continues to fuel the development of thermal controlling devices.Here,using ab initio calculations and the Boltzmann transport equation,we demonst... The research on materials capable of manipulating thermal conductivity continues to fuel the development of thermal controlling devices.Here,using ab initio calculations and the Boltzmann transport equation,we demonstrate that the thermal conductivity of semi-fluorinated hexagonal boron nitride(h-BN)can be reversibly manipulated at 300 K,and the ratio for the regulation of thermal conductivity reaches up to 11.23.Such behavior originates from the high sensitivity of thermal conductivity to magnetic ordering.Semi-fluorinated h-BN is a paramagnetic material at room temperature due to its Curie temperature of 270 K.Impressively,semi-fluorinated h-BN can be modulated into a ferromagnetic system by adding an external magnetic field of 11.15 T,resulting in greatly and reversibly tunable thermal conductivity at room temperature.Furthermore,in-depth analyses of phonon properties show that compared with the paramagnetic phase,both ferromagnetic and antiferromagnetic semi-fluorinated h-BN significantly reduce phonon scattering and anharmonicity,thereby enhancing thermal conductivity.The results qualify semi-fluorinated h-BN as a potential candidate for thermal switching applications at room temperature. 展开更多
关键词 ab initio calculations boltzmann transport equationwe thermal controlling deviceshereusing thermal conductivity regulation thermal conductivity magnetic ordering manipulating thermal conductivity semi fluorinated hexagonal boron nitride
原文传递
Using Targeted Phonon Excitation to Modulate Thermal Conductivity of Boron Nitride
3
作者 Dongkai Pan Tianhao Li +3 位作者 Xiao Wan Zhicheng Zong Yangjun Qin Nuo Yang 《Chinese Physics Letters》 2025年第7期449-453,共5页
Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann tran... Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann transport equation solution and the two-temperature model were employed to investigate the efficacy of targeted phonon excitation applied to hexagonal boron nitride(hBN).The results indicate significant modifications to hBN's thermal conductivity,achieving increases of up to 30.1%as well as decreases of up to 59.8%.These findings validate the reliability of the strategy,expand its scope of applicability,and establish it as a powerful tool for tailoring thermal properties across a wider range of fields. 展开更多
关键词 thermal conductivityachieving thermal management capabilities boron nitride targeted phonon excitation iterative boltzmann transport equation solution hexagonal boron nitride hbn thermal conductivity modulating strategies thermal conductivity
原文传递
Thermal and Electrical Percolation Transport Behavior in Composite Materials with Oriented Binary Fillers
4
作者 Jinxin Zhong Zhuoyu Wang +3 位作者 Xiaokun Gu Jun Wang Yuanyuan Wang Xin Qian 《Chinese Physics Letters》 2025年第8期83-96,共14页
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic... In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs. 展开更多
关键词 insulating polymer matrixhigh thermal conductivity electrical resistive integrated circuit packagingthermal interface materials tims must composite materials binary fillers metallic nanowires thermal percolationwhile thermal percolation
原文传递
High-fidelity Lumped-parameter Thermal Models for Assessing Cooling Techniques of PMSMs in EV Applications 被引量:2
5
作者 Dawei Liang Zi Qiang Zhu Ankan Dey 《CES Transactions on Electrical Machines and Systems》 2025年第1期1-14,共14页
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin... This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications. 展开更多
关键词 Cooling techniques Electric vehicle Lumpedparameter thermal model Permanent magnet synchronous machines thermal analysis thermal management
在线阅读 下载PDF
Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure
6
作者 Rui-Peng Wang Tao-Tao Yu +4 位作者 Muhammad Asif Shakoori Ming-JunHan Yu-Xiao Hu Ho-Kin Tang Hai-Peng Li 《Chinese Physics Letters》 2025年第4期67-72,共6页
In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC... In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure. 展开更多
关键词 molecular dynamics simulations GRAPHENE phonon transport quasi hexagonal phase fullerene HETEROSTRUCTURE phonon thermal transport interfacial thermal conductance interfacial thermal conductance itc
原文传递
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation
7
作者 Shuai Liang Wen-Jing Jiang Ji-Xiang Hu 《Chinese Journal of Structural Chemistry》 2025年第2期5-6,共2页
Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices... Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices[1].Thermal expansion is a pivotal aspect in solid state chemistry,intricately intertwined with various factors such as crystal structure,chemical composition,electronic configuration,microstructure,and defects.Most materials undergo isotropic and positive thermal expansion(PTE)because of the disharmonic vibrational amplitudes of their chemical bonds.Moreover,anisotropic thermal expansion(ATE)and negative thermal expansion(NTE)are fascinating physical attributes of solids,which can originate from electronic or magnetic mechanisms,as well as through a transverse phonon mechanism in insulating lattice solids. 展开更多
关键词 transducing thermal energy thermal actuating materials Spin crossover Rhombus deformation isotropic positive thermal expansion pte solid state chemistryintricately molecular reconfigurations crystal structurechemical
原文传递
Fast-Developing Dynamic Radiative Thermal Management:Full-Scale Fundamentals,Switching Methods,Applications,and Challenges
8
作者 Long Xie Xuechuan Wang +2 位作者 Yageng Bai Xiaoliang Zou Xinhua Liu 《Nano-Micro Letters》 2025年第6期427-465,共39页
Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events a... Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health,driving a growing dependence on cooling and heating energy sources.Consequently,efficient thermal management has become a central focus of energy research.Traditional thermal management systems consume substantial energy,further contributing to greenhouse gas emissions.In contrast,emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives.However,achieving year-round thermal management without additional energy input remains a formidable challenge.Recently,dynamic radiative thermal management technologies have emerged as the most promising solution,offering the potential for energy-efficient adaptation across seasonal variations.This review systematically presents recent advancements in dynamic radiative thermal management,covering fundamental principles,switching mechanisms,primary materials,and application areas.Additionally,the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed.By highlighting their transformative potential,this review provides insights into the design and industrial scalability of these innovations,with the ultimate aim of promoting renewable energy integration in thermal management applications. 展开更多
关键词 thermal comfort Radiant thermal management Dynamic radiative thermal management Renewable energy
在线阅读 下载PDF
Measuring Nanoscale Interface Thermal Resistance via Electron Microscope
9
作者 Fa-Chen Liu Peng Gao 《Chinese Physics Letters》 2025年第8期285-304,共20页
Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for th... Rapid technological advancements drive miniaturization and high energy density in devices,thereby increasing nanoscale thermal management demands and urging development of higher spatial resolution technologies for thermal imaging and transport research.Here,we introduce an approach to measure nanoscale thermal resistance using in situ inelastic scanning transmission electron microscopy.By constructing unidirectional heating flux with controlled temperature gradients and analyzing electron energy-loss/gain signals under optimized acquisition conditions,nanometer-resolution in mapping phonon apparent temperature is achieved.Thus,interfacial thermal resistance is determined by calculating the ratio of interfacial temperature difference to bulk temperature gradient.This methodology enables direct measurement of thermal transport properties for atomic-scale structural features(e.g.,defects and heterointerfaces),resolving critical structure-performance relationships,providing a useful tool for investigating thermal phenomena at the(sub-)nanoscale. 展开更多
关键词 measure nanoscale thermal resistance nanoscale thermal resistance technological advancements higher spatial resolution technologies situ inelastic scanning transmission electron microscopyby constructing unidirectional heating flux controlled temperature gradients transport researchherewe thermal imaging
原文传递
Nano-thermometry in photothermal catalysis
10
作者 Lin Zhang Chaoran Li +2 位作者 Thongthai Witoon Xingda An Le He 《Chinese Journal of Structural Chemistry》 2025年第4期18-21,共4页
Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transition... Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes. 展开更多
关键词 solar energy conversion chemical conversionsbesidesdirect nano thermometry situ temperature measurement thermal activation light heat conversion photoand thermal catalytic mechanisms driven photothermal catalysis
原文传递
Thermophysical-mechanical behaviors of hot dry granite subjected to thermal shock cycles and dynamic loadings
11
作者 Ju Wang Feng Dai +2 位作者 Yi Liu Hao Tan Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5437-5452,共16页
Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a ser... Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a series of dynamic compression tests were conducted on granite treated by cyclic thermal shocks at different temperatures.We analyzed the effects of cyclic thermal shock on the thermal-related physical and dynamic mechanical behaviors of granite.Specifically,the P-wave velocity,dynamic strength,and elastic modulus of the tested granite decrease with increasing temperature and cycle number,while porosity and peak strain increase.The degradation law of dynamic mechanical properties could be described by a cubic polynomial.Cyclic thermal shock promotes shear cracks propagation,causing dynamic failure mode of granite to transition from splitting to tensile-shear composite failure,accompanied by surface spalling and debris splashing.Moreover,the thermal shock damage evolution and coupled failure mechanism of tested granite are discussed.The evolution of thermal shock damage with thermal shock cycle numbers shows an obvious S-shaped surface,featured by an exponential correlation with dynamic mechanical parameters.In addition,with increasing thermal shock temperature and cycles,granite mineral species barely change,but the length and width of thermal cracks increase significantly.The non-uniform expansion of minerals,thermal shock-induced cracking,and water-rock interaction are primary factors for deteriorating dynamic mechanical properties of granite under cyclic thermal shock. 展开更多
关键词 Geothermal exploitation Cyclic thermal shock GRANITE thermal-related physical properties Dynamic mechanical behavior Failure mechanism
在线阅读 下载PDF
Advances in Organic Porous Polymeric-Supported Photothermal Phase Change Materials
12
作者 Fulai Zhao Weikang Yuan +4 位作者 Huiyu Chen Hui Fu Zhen Li Jian Xiao Yiyu Feng 《Carbon Energy》 2025年第6期47-89,共43页
The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change ma... The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change materials(PTPCMs)represent a novel type of composite phase change material(PCM)aimed at improving thermal storage efficiency by incorporating photothermal materials into traditional PCMs and encapsulating them within porous structures.Various porous encapsulation materials have been studied,including porous carbon,expanded graphite,and ceramics,but issues like brittleness hinder their practical use.To overcome these limitations,flexible PTPCMs using organic porous polymers—like foams,hydrogels,and porous wood—have emerged,offering high porosity and lightweight characteristics.This review examines recent advancements in the preparation of PTPCMs based on porous polymer supports through techniques like impregnation and in situ polymerization,assessing the impact of different porous polymer materials on PCM performance and clarifying the mechanisms of photothermal conversion and heat storage.Subsequently,the most recent advancements in the applications of porous polymer-based PTPCMs are systematically summarized,and future research challenges and possible solutions are discussed.This review aims to foster awareness about the potential of PTPCMs in promoting environmentally friendly energy practices and catalyzing further research in this promising field. 展开更多
关键词 functional composite materials multifunctional application photothermal conversion efficiency photothermal phase change materials porous polymers thermal energy storage
在线阅读 下载PDF
Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area−Evidence from heat flow determination in the Archean of D01 well
13
作者 Ya-hui Yao Xiao-feng Jia +5 位作者 Sheng-tao Li Jun-yan Cui Hong Xiang Dong-dong Yue Qiu-xia Zhang Zhao-long Feng 《Journal of Groundwater Science and Engineering》 2025年第1期22-33,共12页
The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary ... The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins. 展开更多
关键词 Heat flow vertical difference Archean crystalline basement thermal conductivity Niutuozhen geothermal field Present-day temperature field Geothermal genetic mechanism D01 well
在线阅读 下载PDF
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
14
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery 被引量:6
15
作者 Wenxin Mei Zhixiang Cheng +5 位作者 Longbao Wang Anqi Teng Zhiyuan Li Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 2025年第3期18-26,共9页
Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy densit... Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell. 展开更多
关键词 Li-ion battery Na-ion battery thermal runaway Characteristic parameters thermal hazard assessment
在线阅读 下载PDF
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:3
16
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 thermal energy storage Phase change material Supporting material Carbon-based material thermal conductivity Shape-stabilized composite
原文传递
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
17
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE thermal cycles High temperature Fracture surface roughness ANISOTROPIC thermal damage
在线阅读 下载PDF
Phase-change heterostructure with HfTe_(2)confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization 被引量:1
18
作者 S.W.Park H.J.Lee +6 位作者 K.A.Nirmal T.H.Kim D.H.Kim J.Y.Choi J.S.Oh J.M.Joo T.G.Kim 《Journal of Materials Science & Technology》 2025年第1期104-114,共11页
Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal condu... Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal conductivities of phase-change materials(PCMs)promote Joule heating dissi-pation.Repeated phase transitions also induce long-range atomic diffusion,limiting the durability.To address these challenges,phase-change heterostructure(PCH)devices that incorporate confinement sub-layers based on transition-metal dichalcogenide materials have been developed.In this study,we engi-neered a PCH device by integrating HfTe_(2),which has low thermal conductivity and excellent stability,into the PCM to realize PCRAM with enhanced thermal efficiency and structural stability.HEAT sim-ulations were conducted to validate the superior heat confinement in the programming region of the HfTe_(2)-based PCH device.Moreover,electrical measurements of the device demonstrated its outstanding performance,which was characterized by a low RESET current(∼1.6 mA),stable two-order ON/OFF ratio,and exceptional cycling endurance(∼2×10^(7)).The structural integrity of the HfTe_(2)confinement sub-layer was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy.The material properties,including electrical conductivity,cohesive energy,and electronegativity,substantiated these findings.Collectively,these results revealed that the HfTe_(2)-based PCH device can achieve significant improvements in performance and reliability compared with conventional PCRAM devices. 展开更多
关键词 Phase-change random-access memory Phase-change heterostructure thermal efficiency thermal stability Low-power operation
原文传递
Research Progress on Thermal Management of Lithium-Ion Batteries
19
作者 Hong-Da Li Qiu-Wan Shen +3 位作者 Zhao-Yang Zhang Xin-Yue Zhao Yuan Wei Shi-An Li 《电化学(中英文)》 北大核心 2025年第7期1-17,共17页
Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their perfor... Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their performance,safety and service life through thermal management technology.In this paper,the causes of thermal runaway of lithium batteries are reviewed firstly,and three commonly used thermal management technologies,namely,air cooling,liquid cooling and phase change material cooling,are compared according to relevant literature in recent years.Air cooling technology has been widely studied because of its simple structure and low cost,but its temperature control effect is poor.Liquid cooling technology takes away heat through the circulation of liquid medium,which has a good cooling effect,but the system is relatively complex.Phase change material(PCM)cooling technology uses the high latent heat of PCM to absorb and re-lease heat,which can effectively reduce the peak temperature of a battery and improve the temperature uniformity,but the low thermal conductivity and liquid leakage are its main problems.To sum up,lithium-ion battery thermal management technology is moving towards a more efficient,safer and cost-effective direction.Coupled cooling systems,such as those combining liquid cooling and phase change material cooling,show great potential.Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery perfor-mance and safety. 展开更多
关键词 Lithium-ion battery thermal runaway thermal management system Phase change material Air cooling Liquid cooling
在线阅读 下载PDF
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
20
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部