The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
This paper presents an analysis of an equilateral triangular array formation initialization for space-based gravitational wave observatory(GWO)near Lagrange points in the circular-restricted three-body problem.A stabl...This paper presents an analysis of an equilateral triangular array formation initialization for space-based gravitational wave observatory(GWO)near Lagrange points in the circular-restricted three-body problem.A stable configuration is essential for the continuous observation of gravitational waves(GWs).However,the motion near the collinear libration points is highly unstable.This problem is examined by output regulation theory.Using the tracking aspect,the equilateral triangular array formation is established in two periods and the fuel consumption is calculated.Furthermore,the natural evolution of the formation without control input is analyzed,and the effective stability duration is quantified to determine the timing of control interventions.Finally,to observe the GWs in same direction with different frequency bands,scale reconfiguration is employed.展开更多
The basic idea of quasi-conforming method is that the strain-dis-placement equations are weakened as well as the equilibrium equations.In this paper,an 18-DOF triangular element for couple stress theory is proposed wi...The basic idea of quasi-conforming method is that the strain-dis-placement equations are weakened as well as the equilibrium equations.In this paper,an 18-DOF triangular element for couple stress theory is proposed within the framework of quasi-conforming technique.The formulation starts from truncated Taylor expansion of strains and appropriate interpolation functions are chosen to calculate strain integration.This element satisfies C0 continuity with second order accuracy and weak C1 continuity simultaneously.Numerical examples demonstrate that the proposed model can pass the C0??1 patch test and has high accuracy.The element does not exhibit extra zero energy modes and can capture the scale effects of microstructure.展开更多
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge...Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems.展开更多
According to the fraud"triangle theory",the causes of professional embezzlements committed by executives of China’s state-owned enterprises are mainly from pressure,opportunities and excuses.Among them,pres...According to the fraud"triangle theory",the causes of professional embezzlements committed by executives of China’s state-owned enterprises are mainly from pressure,opportunities and excuses.Among them,pressure is a huge psychological burden and desire generated by the combined action of the self-interested value orientation of the economic man and the value-oriented market economy in the pursuit of wealth.Opportunity refers mainly to the weak restrain on the asset operation responsibility of the executives,the cultural atmosphere of advocating the status and authority in the enterprises,and the lack of necessary power balance and internal control,all of them are caused by the system defects of the company systems under the public ownership.Excuses mainly have such forms as"kickbacks","borrowed money"and unreasonable design of remuneration and incentive systems,etc.The effective way to prevent executives of state-owned enterprises from committing professional embezzlement is to select the personnel with excellent conduct and ability as executives,create the corporate culture of honesty and trustworthiness,perfect a variety of mechanisms and systems,urge the effective implementation of the system,and maintain the normal operation of the mechanism.展开更多
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金supported by the China Scholarship Council(CSC)(No.202206290131)。
文摘This paper presents an analysis of an equilateral triangular array formation initialization for space-based gravitational wave observatory(GWO)near Lagrange points in the circular-restricted three-body problem.A stable configuration is essential for the continuous observation of gravitational waves(GWs).However,the motion near the collinear libration points is highly unstable.This problem is examined by output regulation theory.Using the tracking aspect,the equilateral triangular array formation is established in two periods and the fuel consumption is calculated.Furthermore,the natural evolution of the formation without control input is analyzed,and the effective stability duration is quantified to determine the timing of control interventions.Finally,to observe the GWs in same direction with different frequency bands,scale reconfiguration is employed.
基金the Fundamental Research Funds for the Central Universities(DUT14RC(3)092)the National Natural Science Foundation of China(No.11272075,11472071).
文摘The basic idea of quasi-conforming method is that the strain-dis-placement equations are weakened as well as the equilibrium equations.In this paper,an 18-DOF triangular element for couple stress theory is proposed within the framework of quasi-conforming technique.The formulation starts from truncated Taylor expansion of strains and appropriate interpolation functions are chosen to calculate strain integration.This element satisfies C0 continuity with second order accuracy and weak C1 continuity simultaneously.Numerical examples demonstrate that the proposed model can pass the C0??1 patch test and has high accuracy.The element does not exhibit extra zero energy modes and can capture the scale effects of microstructure.
文摘Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems.
文摘According to the fraud"triangle theory",the causes of professional embezzlements committed by executives of China’s state-owned enterprises are mainly from pressure,opportunities and excuses.Among them,pressure is a huge psychological burden and desire generated by the combined action of the self-interested value orientation of the economic man and the value-oriented market economy in the pursuit of wealth.Opportunity refers mainly to the weak restrain on the asset operation responsibility of the executives,the cultural atmosphere of advocating the status and authority in the enterprises,and the lack of necessary power balance and internal control,all of them are caused by the system defects of the company systems under the public ownership.Excuses mainly have such forms as"kickbacks","borrowed money"and unreasonable design of remuneration and incentive systems,etc.The effective way to prevent executives of state-owned enterprises from committing professional embezzlement is to select the personnel with excellent conduct and ability as executives,create the corporate culture of honesty and trustworthiness,perfect a variety of mechanisms and systems,urge the effective implementation of the system,and maintain the normal operation of the mechanism.