Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays...Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.展开更多
Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H fil...Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H films were investi- gated by atomic force microscopy. According to the scaling theory, the growth exponent β≈0.67, the roughness exponent α≈0.80,and the dynamic exponent 1/z = 0.40 are obtained. These scaling exponents cannot be explained well by the known growth models. An attempt at Monte Carlo simulation has been made to describe the growth process of μc-Si: H film using a particle reemission model where the incident flux distribution,the type and concentration of growth radical, and sticking,reemission,shadowing mechanisms all contributed to the growing morphology.展开更多
The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to lo...The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy- droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth- od. The efficiency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed films furmed on iron surface. The greater the cohesive energy, the more efficiently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.展开更多
Based on density functional theory(DFT)and basic structure models,the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction(SCR)denitrification catalysts were summarized.Reasonable...Based on density functional theory(DFT)and basic structure models,the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction(SCR)denitrification catalysts were summarized.Reasonable structural models(non-periodic and periodic structural models)are the basis of density functional calculations.A periodic structure model was more appropriate to represent the catalyst surface,and its theoretical calculation results were more comparable with the experimental results than a nonperiodic model.It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2 O follows an Eley-Rideal type mechanism.NH2 NO was found to be an important intermediate in the SCR reaction,with multiple production routes.Simultaneously,the effects of H2 O,SO2 and metal on SCR catalysts were also summarized.展开更多
In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the impr...In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.展开更多
N-doped carbon-based single-atom catalysts(NC-SACs) are widely researched in various electrochemical reactions due to high metal atom utilization and catalytic activity.The catalytic activity of NC-SACs originates fro...N-doped carbon-based single-atom catalysts(NC-SACs) are widely researched in various electrochemical reactions due to high metal atom utilization and catalytic activity.The catalytic activity of NC-SACs originates from the coordinating structure between single metal site(M) and the doped nitrogen(N) in carbon matrix by forming M-N_(x)-C structure(1≤x≤4).The M-N4-C structure is widely considered to be the most stable and effective catalytic site.However,there is no in-depth research for the "x" modulation in Pt-Nx-C structure and the corresponding catalytic properties.Herein,atomically dispersed Pt on N-doped carbon(Pt-NC) with Pt-Nx-C structure(1≤x≤4),as a research model,is fabricated by a ZIF-8 template and applied to catalytic oxygen reduction.Different carbonization temperatures are used to control N loss,and then modulate the N coordination of Pt-Nx-C structure.The Pt-NC has the predictable low half-wave potential(E_(1/2)) of 0.72 V vs RHE compared to the Pt/C 20% of 0.81 V due to low Pt content.Remarkably,the Pt-NC shows a high onset potential(1.10 V vs RHE,determined for j=-0.1 mA cm^(2)) and a high current density of 5.2 mA cm^(-2),more positive and higher than that of Pt/C 20%(0.96 V) and 4.9 mA cm^(-2),respectively.As the structural characterization and DFT simulation confirmed,the reducing PtN coordination number induces low valence of Pt atoms and low free energy of oxygen reduction,which is responsible for the improved catalytic activity.Furthermore,the Pt-NC shows high mass activity(172 times higher than that of Pt/C 20%),better stability and methanol crossover resistance.展开更多
Diglycolamides(DGAs) show excellent application prospects for the extraction and separation of rare earth metals from highly radioactive liquid wastes and rare earth ores.The extraction ability of DGAs for rare earth ...Diglycolamides(DGAs) show excellent application prospects for the extraction and separation of rare earth metals from highly radioactive liquid wastes and rare earth ores.The extraction ability of DGAs for rare earth ions in nitrate or chloride media increases with increasing atomic number of the rare earth metal.To understand the origin of this phenomenon,three binuclear crystals [Ln(TEDGA)_(3)][Ln(NO_(3))_(6)] of N,N,N’,N’-tetraethyldiglycolamide(TEDGA) with rare earth ions La(Ⅲ),Pr(Ⅲ) and Eu(III) were prepared and characterized crystallographically.The three complexes belong to the triclinic crystal system,P-1 space group.The bond lengths of Ln-O_(amide) are significantly shorter than those of Ln-O_(ether) in the same crystal.The Ln-O_(amide) and Ln-O_(enher) bond lengths gradually decrease with increasing atomic number of the rare earth ion.The dihedral angle formed by TEDGA and metal ions through the tridentate coordination gradually increases with increasing metal ion atomic number,tending toward the formation of sizeable planar coordination structures for the most massive rare earth ions.The structures of the compounds formed by the extractant and metal ion were optimized by means of DFT simulations.We find that the interaction between TEDGA and the rare earth ion is dominated by electrostatic interaction by analyzing binding energy,WBIs,Mulliken charge,natural electron configurations,and molecular orbital interaction.The covalent component of the Ln-O bonds of the complexes increases with increasing metal atomic number.The observed increase in extraction and separation capacity of diglycolamides for rare earth ions with increasing atomic number might be due to the formation of two fivemember rings by one tridentate ligand.The rare earth ions with large atomic numbers tend to form planar structures with large dihedral angles with DGA ligands.展开更多
Systematic comparison between computer simulation results and those predicted by Scheutjens-Fleer (SF) self-consistent-field theory is presented for the adsorption of diblock copolymers from a non-selective solvent on...Systematic comparison between computer simulation results and those predicted by Scheutjens-Fleer (SF) self-consistent-field theory is presented for the adsorption of diblock copolymers from a non-selective solvent on attractive surface. It is shown that although SF is a mean-field theory, it can qualitatively describe the adsorption phenomena of diblock copolymers. However, systematic discrepancy between the theory and simulation still exists. The approximations inherited in the mean-field theory such as random mixing inside a layer and the allowance of direct back folding may be responsible to those deviations.展开更多
On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of...On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of grain growth attained n=0.49±0.01, which is very close to the theoretical value of the steady graingrowth n=0.5, indicating the possibility to investigate the total process of normal grain growth. The relationbetween the Hillert and the von Neumann equations were studied and identified, the Hillert's basic equation hasbeen found to hold during the normal grain growth. The grain size distribution was found to van continuouslyand slowly with the simulated time in the total growth process, the lognormal and the Hillert functions may betwo types of the expression forms during its transition, and the later seemingly corresponds at the distribution ofthe steady stage were n≈0.50.展开更多
The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is ...The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)s...The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)simulations of the model were performed using a MARTINI force field.Based on the nonlocal theory,the formula for the initial elastic modulus of polymers considering the nonlocal effect was derived,and the scaling law of internal characteristic length of polymers was proposed,which was used to adjust the cut-off radius in the MD simulations of PLA.The results show that the elastic modulus should be computed using nonlinear regression.The nonlocal effect has a certain influence on the simulation results of PLA.According to the scaling law,the cut-off radius was determined and applied to the MD simulations,the results of which reflect the influence of the molecular weight change on the elastic moduli of PLA,and are in agreement with the experimental outcome.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete t...In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete the theory in practice, inasmuch as they are necessary for its correct application in electronic structure calculations;this understanding elucidates what appears to have been the crucial misunderstanding for 50 years, namely, the confusion between a stationary solution, attainable with most basis sets, following self-consistent iterations, with the ground state solution. The latter is obtained by a calculation that employs the well-defined optimal basis set for the system. The aim of this work is to review the above understanding and to extend it to the relativistic generalization of density functional theory by Rajagopal and Callaway [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken in the non-relativistic case, with the four-component current density, in the former, replacing the electronic charge density, in the latter. This new understanding, which completes relativistic DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from molecules to solids) containing them—as is the case for some high temperature superconductors.展开更多
The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail...The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.展开更多
Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic ...Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic parameters obtained at this level was taken as theoretical descriptors, and corresponding equation predicting the toxicity of Daphnia magna (-lgEC5o) was thus obtained, in which three parameters were contained, i.e., n-octanol/water partition coefficients (lgKow), dipole moment of the molecules( μ) and entropy (S°). For this equation, R^2 = 0.9582, q^2 = 0.8921 and SD = 0.102. The absolute t-scores of three variables are larger than the standard one in the confidence range of 95%, which confirms the creditability and stability of this model.展开更多
Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular w...Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.展开更多
Density functional theory was applied to study the structure of Beta zeolite. A model cluster containing 41Si atoms, 1 Al atom, 70 O atoms and 29 H atoms was constructed. The model structures were optimized using the ...Density functional theory was applied to study the structure of Beta zeolite. A model cluster containing 41Si atoms, 1 Al atom, 70 O atoms and 29 H atoms was constructed. The model structures were optimized using the Becke's three-parameter hybrid method with the Lee-Yang-Parr correlation functional (B3LYP) and the 6-31G basis set applying the Gaussian03 program package. The NMR parameters were calculated to validate the rationality of the model. It was found that in the optimization models, all O-H bond lengths were in range of 0.984-0.985A^°, among which the model with O-H bond length of 0.98478A^° was more stable than the others. The ^1H and ^27Al chemical shifts of the most stable model were 4.03434 and 55.74 ppm, which were pretty consistent with Larry' s experimental data of 4.1 and 54 ppm. The relationship between other structure parameters and total relative electric energy has also been found. All the results exhibit that the 42 T (the total number of Si and Al atoms is 42) model has common properties of the standard of zeolite Beta.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1404204 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12274086, 11534001 and 11925402)+5 种基金funding from the National Science Foundation of China (Grant Nos. 12274046, 11874094, 12147102, and 12347101)Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-JQX0018)the Fundamental Research Funds for the Central Universities (Grant No. 2021CDJZYJH-003)Xiaomi Foundation/Xiaomi Young Talents Programthe supports of the start-up funding of Westlake Universitysupport from the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grants。
文摘Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.
文摘Hydrogenated microcrystalline silicon (~c-Si:H) films with a high deposition rate of 1.2nm/s were prepared by hot-wire chemical vapor deposition (HWCVD). The growth-front roughening processes of the μc-Si..H films were investi- gated by atomic force microscopy. According to the scaling theory, the growth exponent β≈0.67, the roughness exponent α≈0.80,and the dynamic exponent 1/z = 0.40 are obtained. These scaling exponents cannot be explained well by the known growth models. An attempt at Monte Carlo simulation has been made to describe the growth process of μc-Si: H film using a particle reemission model where the incident flux distribution,the type and concentration of growth radical, and sticking,reemission,shadowing mechanisms all contributed to the growing morphology.
基金supported by the Fundamental Research Funds for the Central Universities of China(11CX06036A)
文摘The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy- droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth- od. The efficiency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed films furmed on iron surface. The greater the cohesive energy, the more efficiently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.
基金supported by the National Key Research&Development(R&D)Program of China(No.2017YFC0210500)the National Natural Science Foundation of China(No.51938014)
文摘Based on density functional theory(DFT)and basic structure models,the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction(SCR)denitrification catalysts were summarized.Reasonable structural models(non-periodic and periodic structural models)are the basis of density functional calculations.A periodic structure model was more appropriate to represent the catalyst surface,and its theoretical calculation results were more comparable with the experimental results than a nonperiodic model.It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2 O follows an Eley-Rideal type mechanism.NH2 NO was found to be an important intermediate in the SCR reaction,with multiple production routes.Simultaneously,the effects of H2 O,SO2 and metal on SCR catalysts were also summarized.
文摘In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.
基金financially supported by the National Natural Science Foundation of China (Nos. 51572124 and 51702162)the Natural Science Foundation of Jiangsu Province (No. BK20180154and BK20180490)+1 种基金the Fundamental Research Funds for the Central Universities (No. 30920130111003)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China)。
文摘N-doped carbon-based single-atom catalysts(NC-SACs) are widely researched in various electrochemical reactions due to high metal atom utilization and catalytic activity.The catalytic activity of NC-SACs originates from the coordinating structure between single metal site(M) and the doped nitrogen(N) in carbon matrix by forming M-N_(x)-C structure(1≤x≤4).The M-N4-C structure is widely considered to be the most stable and effective catalytic site.However,there is no in-depth research for the "x" modulation in Pt-Nx-C structure and the corresponding catalytic properties.Herein,atomically dispersed Pt on N-doped carbon(Pt-NC) with Pt-Nx-C structure(1≤x≤4),as a research model,is fabricated by a ZIF-8 template and applied to catalytic oxygen reduction.Different carbonization temperatures are used to control N loss,and then modulate the N coordination of Pt-Nx-C structure.The Pt-NC has the predictable low half-wave potential(E_(1/2)) of 0.72 V vs RHE compared to the Pt/C 20% of 0.81 V due to low Pt content.Remarkably,the Pt-NC shows a high onset potential(1.10 V vs RHE,determined for j=-0.1 mA cm^(2)) and a high current density of 5.2 mA cm^(-2),more positive and higher than that of Pt/C 20%(0.96 V) and 4.9 mA cm^(-2),respectively.As the structural characterization and DFT simulation confirmed,the reducing PtN coordination number induces low valence of Pt atoms and low free energy of oxygen reduction,which is responsible for the improved catalytic activity.Furthermore,the Pt-NC shows high mass activity(172 times higher than that of Pt/C 20%),better stability and methanol crossover resistance.
基金Project supported by the National Natural Science Foundation of China(21876062)。
文摘Diglycolamides(DGAs) show excellent application prospects for the extraction and separation of rare earth metals from highly radioactive liquid wastes and rare earth ores.The extraction ability of DGAs for rare earth ions in nitrate or chloride media increases with increasing atomic number of the rare earth metal.To understand the origin of this phenomenon,three binuclear crystals [Ln(TEDGA)_(3)][Ln(NO_(3))_(6)] of N,N,N’,N’-tetraethyldiglycolamide(TEDGA) with rare earth ions La(Ⅲ),Pr(Ⅲ) and Eu(III) were prepared and characterized crystallographically.The three complexes belong to the triclinic crystal system,P-1 space group.The bond lengths of Ln-O_(amide) are significantly shorter than those of Ln-O_(ether) in the same crystal.The Ln-O_(amide) and Ln-O_(enher) bond lengths gradually decrease with increasing atomic number of the rare earth ion.The dihedral angle formed by TEDGA and metal ions through the tridentate coordination gradually increases with increasing metal ion atomic number,tending toward the formation of sizeable planar coordination structures for the most massive rare earth ions.The structures of the compounds formed by the extractant and metal ion were optimized by means of DFT simulations.We find that the interaction between TEDGA and the rare earth ion is dominated by electrostatic interaction by analyzing binding energy,WBIs,Mulliken charge,natural electron configurations,and molecular orbital interaction.The covalent component of the Ln-O bonds of the complexes increases with increasing metal atomic number.The observed increase in extraction and separation capacity of diglycolamides for rare earth ions with increasing atomic number might be due to the formation of two fivemember rings by one tridentate ligand.The rare earth ions with large atomic numbers tend to form planar structures with large dihedral angles with DGA ligands.
基金Supported by the National Natural Science Foundation of China(No. 20025618)the Doctoral Research Foundation by Ministry of Education of China (No.1999025103) and the Dawn Project of Education Committee of Shanghai.
文摘Systematic comparison between computer simulation results and those predicted by Scheutjens-Fleer (SF) self-consistent-field theory is presented for the adsorption of diblock copolymers from a non-selective solvent on attractive surface. It is shown that although SF is a mean-field theory, it can qualitatively describe the adsorption phenomena of diblock copolymers. However, systematic discrepancy between the theory and simulation still exists. The approximations inherited in the mean-field theory such as random mixing inside a layer and the allowance of direct back folding may be responsible to those deviations.
文摘On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of grain growth attained n=0.49±0.01, which is very close to the theoretical value of the steady graingrowth n=0.5, indicating the possibility to investigate the total process of normal grain growth. The relationbetween the Hillert and the von Neumann equations were studied and identified, the Hillert's basic equation hasbeen found to hold during the normal grain growth. The grain size distribution was found to van continuouslyand slowly with the simulated time in the total growth process, the lognormal and the Hillert functions may betwo types of the expression forms during its transition, and the later seemingly corresponds at the distribution ofthe steady stage were n≈0.50.
基金support from the National Key Research and Development Program of China(No.2018YFD0900704)the National Natural Science Foundation of China(No.31972796).
文摘The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金Project supported by the National Natural Science Foundation of China(no.11272360)the Natural Science Foundation of Guangdong Province(no.2014A030313793)+1 种基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)National Supercomputer Center in Guangzhou
文摘The micro-capsules used for drug delivery are fabricated using polylactic acid(PLA),which is a biomedical material approved by the FDA.A coarse-grained model of long-chain PLA was built,and molecular dynamics(MD)simulations of the model were performed using a MARTINI force field.Based on the nonlocal theory,the formula for the initial elastic modulus of polymers considering the nonlocal effect was derived,and the scaling law of internal characteristic length of polymers was proposed,which was used to adjust the cut-off radius in the MD simulations of PLA.The results show that the elastic modulus should be computed using nonlinear regression.The nonlocal effect has a certain influence on the simulation results of PLA.According to the scaling law,the cut-off radius was determined and applied to the MD simulations,the results of which reflect the influence of the molecular weight change on the elastic moduli of PLA,and are in agreement with the experimental outcome.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
文摘In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes two features that complete the theory in practice, inasmuch as they are necessary for its correct application in electronic structure calculations;this understanding elucidates what appears to have been the crucial misunderstanding for 50 years, namely, the confusion between a stationary solution, attainable with most basis sets, following self-consistent iterations, with the ground state solution. The latter is obtained by a calculation that employs the well-defined optimal basis set for the system. The aim of this work is to review the above understanding and to extend it to the relativistic generalization of density functional theory by Rajagopal and Callaway [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken in the non-relativistic case, with the four-component current density, in the former, replacing the electronic charge density, in the latter. This new understanding, which completes relativistic DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from molecules to solids) containing them—as is the case for some high temperature superconductors.
基金The Project Supported by the National Natural Science Foundation of China
文摘The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.
基金This work was supported by the Natural Science Research Fund of Universities in Jiangsu Province (04KJB150149)
文摘Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic parameters obtained at this level was taken as theoretical descriptors, and corresponding equation predicting the toxicity of Daphnia magna (-lgEC5o) was thus obtained, in which three parameters were contained, i.e., n-octanol/water partition coefficients (lgKow), dipole moment of the molecules( μ) and entropy (S°). For this equation, R^2 = 0.9582, q^2 = 0.8921 and SD = 0.102. The absolute t-scores of three variables are larger than the standard one in the confidence range of 95%, which confirms the creditability and stability of this model.
基金the National Key R&D Program of China (Grant No.2016YFE0200100)the National Natural Science Foundation of China (Grant Nos.51490672 and 51479026).
文摘Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.
基金Supported by the National Basic Research Program of China (2004CB217804)National Natural Science Foundation of China (20625621)
文摘Density functional theory was applied to study the structure of Beta zeolite. A model cluster containing 41Si atoms, 1 Al atom, 70 O atoms and 29 H atoms was constructed. The model structures were optimized using the Becke's three-parameter hybrid method with the Lee-Yang-Parr correlation functional (B3LYP) and the 6-31G basis set applying the Gaussian03 program package. The NMR parameters were calculated to validate the rationality of the model. It was found that in the optimization models, all O-H bond lengths were in range of 0.984-0.985A^°, among which the model with O-H bond length of 0.98478A^° was more stable than the others. The ^1H and ^27Al chemical shifts of the most stable model were 4.03434 and 55.74 ppm, which were pretty consistent with Larry' s experimental data of 4.1 and 54 ppm. The relationship between other structure parameters and total relative electric energy has also been found. All the results exhibit that the 42 T (the total number of Si and Al atoms is 42) model has common properties of the standard of zeolite Beta.