Using Dvoretzky’s theorem in conjunction with Bohm’s picture of a quantum particle inside a guiding quantum wave akin to De Broglie-Bohm pilot wave we derive Einstein’s famous formula E = mc2 as the sum of two part...Using Dvoretzky’s theorem in conjunction with Bohm’s picture of a quantum particle inside a guiding quantum wave akin to De Broglie-Bohm pilot wave we derive Einstein’s famous formula E = mc2 as the sum of two parts E(O) = mc2/22 of the quantum particle and E(D) = m c2 (21/22) of the quantum wave where m is the mass, c is the speed of light and E is the energy. In addition we look at the problem of black holes information in the presence of extra dimensions where it seems initially that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. Again this surprising result is a consequence of the same well known theorem on measure concentration due to I. Dvoretzky. We conclude that there are only two real applications of the theorem and we expect that many more applications in physics and cosmology will be found in due course.展开更多
It is widely accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies of animals and the mechanism proposed by the MVT has been supported by a number of field observations. However, finding...It is widely accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies of animals and the mechanism proposed by the MVT has been supported by a number of field observations. However, findings of many researchers indicate that in natural conditions foragers do not always behave according to the MVT. To address this inconsistency, in a series of computer simulation experiments, we examined the behaviour of four types of foragers having specific foraging efficiencies and using the MVT strategies in 15 different landscapes in an ideal environment (no intra-and inter-specific interactions). We used data on elk (Cervus elaphus) to construct our virtual forager. Contrary to the widely accepted understanding of the MVT (residence time in a patch should be longer in environments where travel time between patches is longer) we found that in environments with the same average patch quality and varying average travel times between patches, patch residence times of some foragers are not affected by travel times. Based on our analysis we propose a mechanism responsible for this observation and formulate the perfect forager theorem (PFT). We also introduce the concepts of a foraging coefficient (F) and foragers’ hub (α), and propose a model to describe the relationship between the perfect forager and all other forager types.展开更多
The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to w...The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.展开更多
The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is n...The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.展开更多
Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logical...As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. This surprising result is a consequence of a well known theorem on measure concentration due to I. Dvoretzky.展开更多
This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncert...This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.展开更多
In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities...In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generalizations of several known results in the literature.展开更多
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded...The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.展开更多
In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator...In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator, we prove some strong convergence theorems of a new modified Halpern type hybrid iterative algorithm for the totally quasi-G-asymptotically nonexpansive semigroups in Banach space. The results presented in this paper extend and improve some corresponding ones by many others.展开更多
This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of...This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.展开更多
We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realiz...We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realization of |τ>. By employing the entangled state representation |ζ> and deriving a new binomial theorem involving two-subscript Hermite polynomials, we derive the wave function <ζ|τ>, which turns out to be a single-subscript Hermite polynomial. Based on this result the maintenance of angular momentum coherent state during time evolution is examined, and the value of τ(t) is totally determined by the parameters involved in the Hamiltonian.展开更多
A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance ...A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero ...The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero directly at present. However, according to the theory of differential equation, the integral constant should be determined by the known boundary conditions of spherical surface, in stead of the metric at the spherical center. By considering that fact that the volumes of three dimensional hollow and solid spheres in curved space are different from that in flat space, the integral constants are proved to be nonzero. The results indicate that no matter what the masses and densities of hollow sphere and solid sphere are, there exist space-time singularities at the centers of hollow sphere and solid spheres. Meanwhile, the intensity of pressure at the center point of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called black hole. At the center and its neighboring region of solid sphere, pressure intensities become negative values. There may be a region for hollow sphere in which pressure intensities may become negative values too. The common hollow and solid spheres in daily live can not have such impenetrable characteristics. The results only indicate that the singularity black holes predicated by general relativity are caused by the descriptive method of curved space-time actually. If black holes exist really in the universe, they can only be the Newtonian black holes, not the Einstein’s black holes. The results revealed in the paper are consistent with the Hawking theorem of singularity actually. They can be considered as the practical examples of the theorem.展开更多
Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves t...Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.展开更多
The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve ...The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve the problem until Andrew Wiles proved the Fermat’s Last Theorem through a very difficult method called Modular elliptic curves in 1995. In this paper, I firstly constructed a geometric method to prove Fermat’s Last Theorem, and in this way we can easily get the conclusion below: If a and b are integer and?a = b, n ∈ Q and n > 1, the value of c satisfies the function an + bn = cn that can never be integer;if a, b and c are integer and a ≠ b, n is integer and n > 2, the function an + bn = cn cannot be established.展开更多
In this paper, we prove a common fixed point theorem in Intuitionistic fuzzy metric space by using pointwise R-weak commutativity and reciprocal continuity of mappings satisfying contractive conditions.
We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open prob...We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open problems.展开更多
Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a...Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.展开更多
文摘Using Dvoretzky’s theorem in conjunction with Bohm’s picture of a quantum particle inside a guiding quantum wave akin to De Broglie-Bohm pilot wave we derive Einstein’s famous formula E = mc2 as the sum of two parts E(O) = mc2/22 of the quantum particle and E(D) = m c2 (21/22) of the quantum wave where m is the mass, c is the speed of light and E is the energy. In addition we look at the problem of black holes information in the presence of extra dimensions where it seems initially that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. Again this surprising result is a consequence of the same well known theorem on measure concentration due to I. Dvoretzky. We conclude that there are only two real applications of the theorem and we expect that many more applications in physics and cosmology will be found in due course.
文摘It is widely accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies of animals and the mechanism proposed by the MVT has been supported by a number of field observations. However, findings of many researchers indicate that in natural conditions foragers do not always behave according to the MVT. To address this inconsistency, in a series of computer simulation experiments, we examined the behaviour of four types of foragers having specific foraging efficiencies and using the MVT strategies in 15 different landscapes in an ideal environment (no intra-and inter-specific interactions). We used data on elk (Cervus elaphus) to construct our virtual forager. Contrary to the widely accepted understanding of the MVT (residence time in a patch should be longer in environments where travel time between patches is longer) we found that in environments with the same average patch quality and varying average travel times between patches, patch residence times of some foragers are not affected by travel times. Based on our analysis we propose a mechanism responsible for this observation and formulate the perfect forager theorem (PFT). We also introduce the concepts of a foraging coefficient (F) and foragers’ hub (α), and propose a model to describe the relationship between the perfect forager and all other forager types.
文摘The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.
文摘The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.
文摘As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. This surprising result is a consequence of a well known theorem on measure concentration due to I. Dvoretzky.
文摘This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.
文摘In this paper, we introduce and study the system of generalized vector quasi-variational-like inequalities in Hausdorff topological vector spaces, which include the system of vector quasi-variational-like inequalities, the system of vector variational-like inequalities, the system of vector quasi-variational inequalities, and several other systems as special cases. Moreover, a number of C-diagonal quasiconvexity properties are proposed for set-valued maps, which are natural generalizations of the g-diagonal quasiconvexity for real functions. Together with an application of continuous selection and fixed-point theorems, these conditions enable us to prove unified existence results of solutions for the system of generalized vector quasi-variational-like inequalities. The results of this paper can be seen as extensions and generalizations of several known results in the literature.
文摘The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.
文摘In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator, we prove some strong convergence theorems of a new modified Halpern type hybrid iterative algorithm for the totally quasi-G-asymptotically nonexpansive semigroups in Banach space. The results presented in this paper extend and improve some corresponding ones by many others.
文摘This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2016AM03 and ZR2017MA011)
文摘We study how can an angular momentum coherent state |τ> keeps its form-invariant during time evolution governed by the Hamiltonian H = f(t)J++ f^*(t)J-+ g(t)Jz. We discuss this topic in the context of boson realization of |τ>. By employing the entangled state representation |ζ> and deriving a new binomial theorem involving two-subscript Hermite polynomials, we derive the wave function <ζ|τ>, which turns out to be a single-subscript Hermite polynomial. Based on this result the maintenance of angular momentum coherent state during time evolution is examined, and the value of τ(t) is totally determined by the parameters involved in the Hamiltonian.
文摘A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘The precise inner solutions of gravity field equations of hollow and solid spheres are calculated in this paper. To avoid space curvature infinite at the center of solid sphere, we set an integral constant to be zero directly at present. However, according to the theory of differential equation, the integral constant should be determined by the known boundary conditions of spherical surface, in stead of the metric at the spherical center. By considering that fact that the volumes of three dimensional hollow and solid spheres in curved space are different from that in flat space, the integral constants are proved to be nonzero. The results indicate that no matter what the masses and densities of hollow sphere and solid sphere are, there exist space-time singularities at the centers of hollow sphere and solid spheres. Meanwhile, the intensity of pressure at the center point of solid sphere can not be infinite. That is to say, the material can not collapse towards the center of so-called black hole. At the center and its neighboring region of solid sphere, pressure intensities become negative values. There may be a region for hollow sphere in which pressure intensities may become negative values too. The common hollow and solid spheres in daily live can not have such impenetrable characteristics. The results only indicate that the singularity black holes predicated by general relativity are caused by the descriptive method of curved space-time actually. If black holes exist really in the universe, they can only be the Newtonian black holes, not the Einstein’s black holes. The results revealed in the paper are consistent with the Hawking theorem of singularity actually. They can be considered as the practical examples of the theorem.
文摘Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.
文摘The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve the problem until Andrew Wiles proved the Fermat’s Last Theorem through a very difficult method called Modular elliptic curves in 1995. In this paper, I firstly constructed a geometric method to prove Fermat’s Last Theorem, and in this way we can easily get the conclusion below: If a and b are integer and?a = b, n ∈ Q and n > 1, the value of c satisfies the function an + bn = cn that can never be integer;if a, b and c are integer and a ≠ b, n is integer and n > 2, the function an + bn = cn cannot be established.
文摘In this paper, we prove a common fixed point theorem in Intuitionistic fuzzy metric space by using pointwise R-weak commutativity and reciprocal continuity of mappings satisfying contractive conditions.
文摘We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open problems.
文摘Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.