In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints...Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.展开更多
In this paper,we study Liouville theorem for the 3D stationary Q-tensor system of liquid crystal in Lorentz and Morrey spaces.Under some additional hypotheses,stated in terms of Lorentz and Morrey spaces,using energy ...In this paper,we study Liouville theorem for the 3D stationary Q-tensor system of liquid crystal in Lorentz and Morrey spaces.Under some additional hypotheses,stated in terms of Lorentz and Morrey spaces,using energy estimation,we obtain that the trivial solution u=Q=0 is the unique solution.Our theorems correspond to improvements of some recent results and contain some known results as particular cases.展开更多
Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglo...Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.展开更多
We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,w...We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,we derive the exact upper limit of physical energy level.Further,we derive some recursive relations for energy matrix elements of the potential and other similar operators in the context of Morse oscillator theory.展开更多
In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimens...In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.展开更多
In this paper,we study the basic p-harmonic forms on the complete foliated Riemannian manifolds.By using the method in[1],we show that if the basic mean curvature form is bounded and co-closed,and the transversal curv...In this paper,we study the basic p-harmonic forms on the complete foliated Riemannian manifolds.By using the method in[1],we show that if the basic mean curvature form is bounded and co-closed,and the transversal curvature operator is nonnegative and positive at least one point,then we obtain a vanishing theorem for L^(p)-integrably p-harmonic r-forms.展开更多
In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
this paper,we study Liouville theorem for 3D steady Q-tensor system of liquid crystal in mixed Lorentz spaces.We obtain u=0,Q=0 on the conditions that μ∈L^(p,∞x_(1)L^(q,∞x_(2)L^(r,∞x_(3)(R^(4)∩H^(1)(R^(3),Q∈H^(...this paper,we study Liouville theorem for 3D steady Q-tensor system of liquid crystal in mixed Lorentz spaces.We obtain u=0,Q=0 on the conditions that μ∈L^(p,∞x_(1)L^(q,∞x_(2)L^(r,∞x_(3)(R^(4)∩H^(1)(R^(3),Q∈H^(2)(R^(3),p,q,r∈(3,∞],and 1/p+1/q+1/r≥2/3, which extends some known results.展开更多
The Steiner-Lehmus equal bisectors theorem originated in the mid 19th century.Despite its age,it would have been accessible to Euclid and his contemporaries.The theorem remains evergreen,with new proofs continuing to ...The Steiner-Lehmus equal bisectors theorem originated in the mid 19th century.Despite its age,it would have been accessible to Euclid and his contemporaries.The theorem remains evergreen,with new proofs continuing to appear steadily.The theorem has fostered discussion about the nature of proof itself,direct and indirect.Here we continue the momentum by providing a trigonometric proof,relatively short,based on an analytic estimate that leverages algebraic trigonometric identities.Many proofs of the theorem exist in the literature.Some of these contain key ideas that already appeared in C.L.Lehmus’1850 proofs,not always with citation.In the aim of increasing awareness of and making more accessible Lehmus’proofs,we provide an annotated translation.We conclude with remarks on different proofs and relations among them.展开更多
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuz...Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuzzy set are studied firstly, and then the cut set of interval fuzzy set is proposed. Moreover, the decomposition theo- rem, the representation theorem and the extension theorem of interval fuzzy set are presented. Finally, examples are given to demonstrate that the classical fuzzy set is a special case of interval fuzzy set and interval fuzzy set is an effective expansion of the classical fuzzy set.展开更多
In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg gro...In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg group away from characteristic points and signed geodesic curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for Euclidean C2-smooth curves on surfaces.We get Gauss-Bonnet theorems associated to two kinds of Schouten-Van Kampen affine connections in the Heisenberg group.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of...In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of certain growth conditions for the mean oscillations of the potentials.And then we show similar results assuming that the solutions are contained in L^(p)(R^(3))with p∈[2,9/2).Finally,we show the same result for lower values of p∈[1,9/4)with the further assumption that the solutions vanish at infinity.展开更多
This article improves and advances the results achieved by Vishal and Naveen,leveraging the use of Lebesgue integrable functions.Going beyond,we investigate fixed point theorems associated with a concept introduced by...This article improves and advances the results achieved by Vishal and Naveen,leveraging the use of Lebesgue integrable functions.Going beyond,we investigate fixed point theorems associated with a concept introduced by Ovidiu Popescu.Our research not only bolsters the theoretical framework but also unveils practical applications in the domain of Lebesgue integrals as in Example 3.6.Furthermore,our contribution enhances the understanding of fixed point theorems in metric spaces and introduces novel perspectives in the study of generalizedα-Geraghty contractive mappings on Lebesgue integrals.展开更多
Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with...Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.展开更多
The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infini...The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.展开更多
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
文摘Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.
基金Supported by National Natural Science Foundation of China(11871305,11901346).
文摘In this paper,we study Liouville theorem for the 3D stationary Q-tensor system of liquid crystal in Lorentz and Morrey spaces.Under some additional hypotheses,stated in terms of Lorentz and Morrey spaces,using energy estimation,we obtain that the trivial solution u=Q=0 is the unique solution.Our theorems correspond to improvements of some recent results and contain some known results as particular cases.
基金supported by the National Natural Science Foundation of China(Grant No.12272248)the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX23_3296).
文摘Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.
基金supported by the National Natural Science Foundation of China(No.10874174)。
文摘We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,we derive the exact upper limit of physical energy level.Further,we derive some recursive relations for energy matrix elements of the potential and other similar operators in the context of Morse oscillator theory.
基金Supported by National Natural Science Foundation of China(Grant No.11771070).
文摘In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.
基金supported by Guangzhou Science and Technology Program(202102021174)Guangdong Basic and Applied Basic Research Foundation(2023A1515012121).The second author was supported by the Natural Science Foundation of Jiangsu Province(BK20230900)+1 种基金the Fundamental Research Funds for the Central Universities(30924010838)Both authors are partially supported by NSF in China(12141104).
文摘In this paper,we study the basic p-harmonic forms on the complete foliated Riemannian manifolds.By using the method in[1],we show that if the basic mean curvature form is bounded and co-closed,and the transversal curvature operator is nonnegative and positive at least one point,then we obtain a vanishing theorem for L^(p)-integrably p-harmonic r-forms.
基金supported by the National key R and D Program of China 2020YFA0713100the NSFC(12141104,12371062 and 12431004).
文摘In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
基金Supported by the National Natural Science Foundation of China(11871305)。
文摘this paper,we study Liouville theorem for 3D steady Q-tensor system of liquid crystal in mixed Lorentz spaces.We obtain u=0,Q=0 on the conditions that μ∈L^(p,∞x_(1)L^(q,∞x_(2)L^(r,∞x_(3)(R^(4)∩H^(1)(R^(3),Q∈H^(2)(R^(3),p,q,r∈(3,∞],and 1/p+1/q+1/r≥2/3, which extends some known results.
文摘The Steiner-Lehmus equal bisectors theorem originated in the mid 19th century.Despite its age,it would have been accessible to Euclid and his contemporaries.The theorem remains evergreen,with new proofs continuing to appear steadily.The theorem has fostered discussion about the nature of proof itself,direct and indirect.Here we continue the momentum by providing a trigonometric proof,relatively short,based on an analytic estimate that leverages algebraic trigonometric identities.Many proofs of the theorem exist in the literature.Some of these contain key ideas that already appeared in C.L.Lehmus’1850 proofs,not always with citation.In the aim of increasing awareness of and making more accessible Lehmus’proofs,we provide an annotated translation.We conclude with remarks on different proofs and relations among them.
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
基金Supported by the Aeronautical Science Foundation(20115868009)the Open Project Program of Key Laboratory of Intelligent Computing&Information Processing of Ministry of Education in Xiangtan University(2011ICIP04)+1 种基金the Program of 211 Innovation Engineering on Information in Xiamen University(2009-2011)the College Students Innovation Training Plan of Xianmen University~~
文摘Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuzzy set are studied firstly, and then the cut set of interval fuzzy set is proposed. Moreover, the decomposition theo- rem, the representation theorem and the extension theorem of interval fuzzy set are presented. Finally, examples are given to demonstrate that the classical fuzzy set is a special case of interval fuzzy set and interval fuzzy set is an effective expansion of the classical fuzzy set.
文摘In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg group away from characteristic points and signed geodesic curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for Euclidean C2-smooth curves on surfaces.We get Gauss-Bonnet theorems associated to two kinds of Schouten-Van Kampen affine connections in the Heisenberg group.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
基金supported by Inha University Research Grant and National Research Foundation of Korea Grant funded by the Korean Government(RS-2023-00212227)supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2020R1C1C1A01006521)。
文摘In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of certain growth conditions for the mean oscillations of the potentials.And then we show similar results assuming that the solutions are contained in L^(p)(R^(3))with p∈[2,9/2).Finally,we show the same result for lower values of p∈[1,9/4)with the further assumption that the solutions vanish at infinity.
文摘This article improves and advances the results achieved by Vishal and Naveen,leveraging the use of Lebesgue integrable functions.Going beyond,we investigate fixed point theorems associated with a concept introduced by Ovidiu Popescu.Our research not only bolsters the theoretical framework but also unveils practical applications in the domain of Lebesgue integrals as in Example 3.6.Furthermore,our contribution enhances the understanding of fixed point theorems in metric spaces and introduces novel perspectives in the study of generalizedα-Geraghty contractive mappings on Lebesgue integrals.
文摘Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.
文摘The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.