The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ...The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.展开更多
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
To analyze the errors of processing data, the testing principle for jet elements is introduced and the property of testing system is theoretically and experimentally studied. On the basis of the above, the method of p...To analyze the errors of processing data, the testing principle for jet elements is introduced and the property of testing system is theoretically and experimentally studied. On the basis of the above, the method of processing data is presented and the error formulae, which are the functions of the testing system property, are derived. Finally, the methods of reducing the errors are provided. The measured results are in correspondence with the theoretical conclusion.展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occ...In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.展开更多
The influence of wind on the pointing accuracy of large aperture radio telescopes is becoming increasingly serious, especially at high observing frequency. Obtaining the wind field characteristics efficiently is very ...The influence of wind on the pointing accuracy of large aperture radio telescopes is becoming increasingly serious, especially at high observing frequency. Obtaining the wind field characteristics efficiently is very important to reduce the wind disturbance on antenna structure. In this paper, an error evaluation of numerical simulation method is established based on the measured data of single point wind tower, and the wind field characteristics are obtained from the evaluated numerical simulation results combined with the measured data for the 110 m aperture Qi Tai radio Telescope(QTT) site. According to the simulation results, compared with the measured data, the root mean square error(RMSE) of wind speed is less than 1 m s^-1, and the minimum wind speed RMSE is 0.2 m s^-1. An analysis of the wind field characteristics of the QTT site suggests that the active wind resistance design of the antenna periphery should focus on the SSW(south-south-west) direction.展开更多
This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutu...This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function I between the original data and the surrogate data. We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.展开更多
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boun...Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boundary conditions. It is well documented in literature that the traditional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an excessively conservative approximation to the null distribution. However, the magnitude of the conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based third-order method to the mixed models for testing the null hypothesis of zero and non-zero variance component. The proposed method dramatically improved the accuracy of the tests. Extensive simulations were carried out to demonstrate the accuracy of the proposed method in comparison with the standard first-order methods. The results show the conservativeness of the first order methods and the accuracy of the proposed method in approximating the p-values and confidence intervals even when the sample size is small.展开更多
The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing hea...The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing heat sensitivity. The application of Jing-well point temperatures test method is wide, and it can be used in internal and external gynecology and pediatrics and facial features department. at the same time, it has the advantage of objective and accurate diagnosis. The old law has some shortcomings, such as poor intuition, unavoidable omission of information, incomplete interpretation of information and so on. In this paper, Excel software is used to transform the data into line chart form, which improves the intuition and comprehensiveness of this method, so that the data can be better interpreted and used. It is newly proposed in this article that in addition to observing the longitudinal di fference of well point temperature, more attention should be paid to the horizontal contrast difference of well point temperature in different meridians. The article also summarizes a number of treatment methods, including acupuncture, moxa moxibustion, cupping and scraping, and the selection of acupoints, including mother acupoints, tenderness points and heat-sensitive moxibustion, so that doctors can combine traditional Chinese medicine professional knowledge in clinic.展开更多
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ...Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.展开更多
The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3...The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.展开更多
Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement me...Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement mechanism and energy consumption. However, the possible reasons of sampling disturbance, machining error and so on often lead to the scattering of test results, and bring ultimate difficulty for forming general test conclusion. Based on the stochastic finite element method, the uncertain parameters of specimen density ps, specimen radius Rs, specimen elastic modulus Es and specimen length Ls in the data processing of SHPB test were considered, and the correlation between the parameters and the test results was analyzed. The results show that the specimen radius Rs has direct correlation with the test result, improving the accuracy in preparing and measuring of specimen is an effective way to improve the accuracy of test and minish the scattering of results for SHPB test.展开更多
Sky brightness is an essential topic in the field of astronomy, especially for optical astronom- ical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness ...Sky brightness is an essential topic in the field of astronomy, especially for optical astronom- ical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manu- factured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × 10-4cd m-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52308403 and 52079068)the Yunlong Lake Laboratory of Deep Underground Science and Engineering(No.104023005)the China Postdoctoral Science Foundation(Grant No.2023M731998)for funding provided to this work.
文摘The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
文摘To analyze the errors of processing data, the testing principle for jet elements is introduced and the property of testing system is theoretically and experimentally studied. On the basis of the above, the method of processing data is presented and the error formulae, which are the functions of the testing system property, are derived. Finally, the methods of reducing the errors are provided. The measured results are in correspondence with the theoretical conclusion.
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
文摘In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.
基金supported by the Chinese Academy of Sciences(CAS)“Light of West China”Program(No.2017-XBQNXZ-B-024)the Xinjiang Uygur Autonomous Region“Tianshan innovation team”(No.2018D14008)+3 种基金the Youth Innovation Promotion Association,CAS(No.2016058)the Operation,Maintenance and upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by CASthe National Natural Science Foundation of China(No.11763007)the Tianshan Youth Project of Xinjiang(No.2017Q014)。
文摘The influence of wind on the pointing accuracy of large aperture radio telescopes is becoming increasingly serious, especially at high observing frequency. Obtaining the wind field characteristics efficiently is very important to reduce the wind disturbance on antenna structure. In this paper, an error evaluation of numerical simulation method is established based on the measured data of single point wind tower, and the wind field characteristics are obtained from the evaluated numerical simulation results combined with the measured data for the 110 m aperture Qi Tai radio Telescope(QTT) site. According to the simulation results, compared with the measured data, the root mean square error(RMSE) of wind speed is less than 1 m s^-1, and the minimum wind speed RMSE is 0.2 m s^-1. An analysis of the wind field characteristics of the QTT site suggests that the active wind resistance design of the antenna periphery should focus on the SSW(south-south-west) direction.
文摘This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method. We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function I between the original data and the surrogate data. We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
文摘Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boundary conditions. It is well documented in literature that the traditional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an excessively conservative approximation to the null distribution. However, the magnitude of the conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based third-order method to the mixed models for testing the null hypothesis of zero and non-zero variance component. The proposed method dramatically improved the accuracy of the tests. Extensive simulations were carried out to demonstrate the accuracy of the proposed method in comparison with the standard first-order methods. The results show the conservativeness of the first order methods and the accuracy of the proposed method in approximating the p-values and confidence intervals even when the sample size is small.
文摘The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing heat sensitivity. The application of Jing-well point temperatures test method is wide, and it can be used in internal and external gynecology and pediatrics and facial features department. at the same time, it has the advantage of objective and accurate diagnosis. The old law has some shortcomings, such as poor intuition, unavoidable omission of information, incomplete interpretation of information and so on. In this paper, Excel software is used to transform the data into line chart form, which improves the intuition and comprehensiveness of this method, so that the data can be better interpreted and used. It is newly proposed in this article that in addition to observing the longitudinal di fference of well point temperature, more attention should be paid to the horizontal contrast difference of well point temperature in different meridians. The article also summarizes a number of treatment methods, including acupuncture, moxa moxibustion, cupping and scraping, and the selection of acupoints, including mother acupoints, tenderness points and heat-sensitive moxibustion, so that doctors can combine traditional Chinese medicine professional knowledge in clinic.
文摘Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.
基金Project(2017YFC0404803) supported by the National Key Research and Development Program of ChinaProject(51678040) supported by the National Natural Science Foundation of ChinaProject(8192034) supported by the Beijing Municipal Natural Science Foundation,China
文摘The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.
基金Projects(50490274, 50534030) supported by the National Natural Science Foundation of ChinaProject supported by the Natural Science Foundatin of Hunan Province, China
文摘Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement mechanism and energy consumption. However, the possible reasons of sampling disturbance, machining error and so on often lead to the scattering of test results, and bring ultimate difficulty for forming general test conclusion. Based on the stochastic finite element method, the uncertain parameters of specimen density ps, specimen radius Rs, specimen elastic modulus Es and specimen length Ls in the data processing of SHPB test were considered, and the correlation between the parameters and the test results was analyzed. The results show that the specimen radius Rs has direct correlation with the test result, improving the accuracy in preparing and measuring of specimen is an effective way to improve the accuracy of test and minish the scattering of results for SHPB test.
基金Langkawi National Observatory,Space Science Research Unit,National Space Agency and East Coast Environmental Research Institute(ESERI)Universiti Sultan Zainal Abidin under university grant(RACE/F1/ST1/UNISZA/15-RR118)
文摘Sky brightness is an essential topic in the field of astronomy, especially for optical astronom- ical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manu- factured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × 10-4cd m-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.