In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The...The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.展开更多
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa...We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.展开更多
文摘In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
文摘The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.
基金supported by National Science Foundation of China(52171251)Liao Ning Revitalization Talents Program(XLYC1907014)+2 种基金the Fundamental Research Funds for the Central Universities(DUT21ZD205)Ministry of Industry and Information Technology(2019-357)the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(QNHX2112)。
文摘We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.