A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintil...A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.展开更多
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ...In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.展开更多
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST...The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.展开更多
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d...Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.展开更多
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build...The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei...The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.展开更多
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by...Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.展开更多
SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classi...SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.展开更多
Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft mea...Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective.展开更多
A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and...A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.展开更多
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia...Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ...In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
Harmonic analysis, the traditional tidal forecasting method, cannot take into account the impact of noncyclical factors, and is also based on the BP neural network tidal prediction model which is easily limited by the...Harmonic analysis, the traditional tidal forecasting method, cannot take into account the impact of noncyclical factors, and is also based on the BP neural network tidal prediction model which is easily limited by the amount of data. According to the movement of celestial bodies, and considering the insufficient tidal characteristics of historical data which are impacted by the nonperiodic weather, a tidal prediction method is designed based on support vector machine (SVM) to carry out the simulation experiment by using tidal data from Xiamen Tide Gauge, Luchaogang Tide Gauge and Weifang Tide Gauge individually. And the results show that the model satisfactorily carries out the tide prediction which is influenced by noncyclical factors. At the same time, it also proves that the proposed prediction method, which when compared with harmonic analysis method and the BP neural network method, has faster modeling speed, higher prediction precision and stronger generalization ability.展开更多
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide.Several studies have indicated that rectal cancer is significantly different from colon cancer interms of treatment, prognosis, and metasta...Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide.Several studies have indicated that rectal cancer is significantly different from colon cancer interms of treatment, prognosis, and metastasis. Recently, the differential mRNA expression of coloncancer and rectal cancer has received a great deal of attention. The current study aimed to identifysignificant differences between colon cancer and rectal cancer based on RNA sequencing (RNA-seq)data via support vector machines (SVM). Here, 393 CRC samples from the The Cancer GenomeAtlas (TCGA) database were investigated, including 298 patients with colon cancer and 95 withrectal cancer. Following the random forest (RF) analysis of the mRNA expression data, 96 genessuch as HOXB13, PR4C, and BCLAFI were identified and utilized to build the SVM classificationmodel with the Leave-One-Out Cross-validation (LOOCV) algorithm. In the training (n= 196)and the validation cohorts (n=197), the accuracy (82. 1 % and 82.2 %, respectively) and the AUC(0.87 and 0.91, respectively) indicated that the established optimal SVM classification modeldistinguished colon cancer from rectal cancer reasonably. However, additional experiments arerequired to validate the predicted gene expression levels and functions.展开更多
The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variableoperating conditions was monitored by a flame monitoring system based on image processing and spectral ana...The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variableoperating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similaritycoefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flamefeatures, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a featureselection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flamefeatures. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVMmodel was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteedsimultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positivelycorrelated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system canachieve the online" identification of coal blends in industry.展开更多
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ...Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.展开更多
基金partially supported by the National Science and Technology Major Project of Ministry of Science and Technology of China (Grant Nos. 2014GB109003 and 2015GB111002)National Natural Science Foundation of China (Grant Nos. 11375195, 11575184, 11375004 and 11775068)
文摘A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
文摘In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.
基金supported in part by the Major Research Plan of the National Natural Science Foundation of China[grant number91530204]the State Key Program of the National Natural Science Foundation of China[grant number 41430426]
文摘The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.
基金The work described in this paper was fully supported by a grant from Hong Kong Metropolitan University(RIF/2021/05).
文摘Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.
基金Supported by Scientific Research Project for Commonwealth (GYHY200806017)Innovation Project for Graduate of Jiangsu Province (CX09S-018Z)
文摘The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the National Natural Science Foundation of China(Nos.32171627 and 62105252)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202200602)the Hangzhou Science and Technology Development Project(No.202204T04).
文摘The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.
文摘Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.
文摘SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.
基金supported by the National Natural Science Foundation of China(61433004,61473069)IAPI Fundamental Research Funds(2013ZCX14)+1 种基金supported by the Development Project of Key Laboratory of Liaoning Provincethe Enterprise Postdoctoral Fund Projects of Liaoning Province
文摘Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective.
基金National Science Foundation of China(Grant No.10772142)National Natural Science Key Foundation of China(Grant No.10832002)the Fundamental Research Funds for the Central Universities
文摘A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金Project(50878082) supported by the National Natural Science Foundation of ChinaProject(200631880237) supported by the Science and Technology Program of West Transportation of the Ministry of Transportation of ChinaKey Project(09JJ3104) supported by the Natural Science Foundation of Hunan Province, China
文摘In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
基金The Shanghai Committee of Science and Technology of China under contract No. 10510502800the Graduate Student Education Innovation Program Foundation of Shanghai Municipal Education Commission of Chinathe National Key Science Foundation Research "973" Project of the Ministry of Science and Technology of China under contract No. 2012CB316200
文摘Harmonic analysis, the traditional tidal forecasting method, cannot take into account the impact of noncyclical factors, and is also based on the BP neural network tidal prediction model which is easily limited by the amount of data. According to the movement of celestial bodies, and considering the insufficient tidal characteristics of historical data which are impacted by the nonperiodic weather, a tidal prediction method is designed based on support vector machine (SVM) to carry out the simulation experiment by using tidal data from Xiamen Tide Gauge, Luchaogang Tide Gauge and Weifang Tide Gauge individually. And the results show that the model satisfactorily carries out the tide prediction which is influenced by noncyclical factors. At the same time, it also proves that the proposed prediction method, which when compared with harmonic analysis method and the BP neural network method, has faster modeling speed, higher prediction precision and stronger generalization ability.
基金supported by the Six Talent Peaks Project in Jiangsu Province(No.2014-wsw-017)Beijing Medical Award Foundation(No.YJHYXKYJJ-432)+2 种基金Foundation of Social Development Project of the Science and Technology Department of Jiangsu Province(No.BE2015719)Social Development Key Research and Development Plan of Jiangsu Province(No.BE2017694)The Foundation of Nanjing Medical University(No.2017NJMUZD140).
文摘Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide.Several studies have indicated that rectal cancer is significantly different from colon cancer interms of treatment, prognosis, and metastasis. Recently, the differential mRNA expression of coloncancer and rectal cancer has received a great deal of attention. The current study aimed to identifysignificant differences between colon cancer and rectal cancer based on RNA sequencing (RNA-seq)data via support vector machines (SVM). Here, 393 CRC samples from the The Cancer GenomeAtlas (TCGA) database were investigated, including 298 patients with colon cancer and 95 withrectal cancer. Following the random forest (RF) analysis of the mRNA expression data, 96 genessuch as HOXB13, PR4C, and BCLAFI were identified and utilized to build the SVM classificationmodel with the Leave-One-Out Cross-validation (LOOCV) algorithm. In the training (n= 196)and the validation cohorts (n=197), the accuracy (82. 1 % and 82.2 %, respectively) and the AUC(0.87 and 0.91, respectively) indicated that the established optimal SVM classification modeldistinguished colon cancer from rectal cancer reasonably. However, additional experiments arerequired to validate the predicted gene expression levels and functions.
基金supported by the National Basic Research Program(973 Program)of China(No.2015CB251501)
文摘The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variableoperating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similaritycoefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flamefeatures, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a featureselection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flamefeatures. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVMmodel was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteedsimultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positivelycorrelated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system canachieve the online" identification of coal blends in industry.
基金This research was funded by the National Natural Science Fund of China[grant number 41701415]Science fund project of Wuhan Institute of Technology[grant number K201724]Science and Technology Development Funds Project of Department of Transportation of Hubei Province[grant number 201900001].
文摘Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.