期刊文献+
共找到3,329篇文章
< 1 2 167 >
每页显示 20 50 100
Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites 被引量:6
1
作者 罗贤 李超 +4 位作者 杨延清 许海嫚 李晓宇 刘帅 李鹏涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1317-1325,共9页
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com... C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase. 展开更多
关键词 Mo coating TiAl alloy SiC fiber titanium matrix composite interracial reaction thermal stability
在线阅读 下载PDF
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
2
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
在线阅读 下载PDF
The interface structure and property of magnesium matrix composites:A review 被引量:2
3
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites interface interfacial strength interfacial modification
在线阅读 下载PDF
Janus Particle Sizing Agent for Interfacial Enhancement of Basalt Fiber/Poly(vinyl chloride)Composites
4
作者 Tian-Lin Liu Peng Kang +7 位作者 Hui Wang Da-Li Gao Kai Xu Tao Cai Qi Xin Sheng-Peng Shi Na Wang Fu-Xin Liang 《Chinese Journal of Polymer Science》 2025年第7期1125-1133,共9页
Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the inte... Sizing treatment is a suitable technique to modify the fiber-matrix interfaces without damage of inherent performance of fibers.In this work,sizing agents based on Janus particles(JPs)were utilized to enhance the interface of basalt fiber(BF)/poly(vinyl chloride)(PVC)composites.polystyrene/poly(butyl acrylate)(PS/PBA)@silica JPs were synthesized by seed emulsion polymerization and three different sizing agents were prepared for BF sizing treatment.JPs with organic soft sphere and inorganic hard hemisphere enhanced the interfaces through their amphiphilicity,chemical bonding and mechanical interlock.The mechanical properties of composite with JPs sizing treated BFs performed better when there was one JPs layer modified on the interface.According to the intermitting bonding and gradient modulus theory,JPs patterned interfaces are ideal transition layers between high modulus BF and low modulus PVC. 展开更多
关键词 Basalt fiber Sizing agent Janus particle Composite interface
原文传递
Effects of alloying elements M(Mn,Cr,Mo,Ni,Cu,and Si)on interface behavior of TiC(002)/Fe(011)
5
作者 LI Jia-xin HOU Guang-xin +3 位作者 JIA Peng HU Li-hua WANG Li-quan WANG Xiang 《Journal of Central South University》 2025年第8期2795-2808,共14页
Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed T... Improving interfacial bonding and alloying design are effective strategies for enhancing mechanical properties of particle-reinforced steel matrix composites(SMCs).This study prepared SMCs with uniformly distributed TiC_(P)in matrix using master alloying method.The TiC(002)/Fe(011)interface model was established based on the orientation relationship of(011)_(Fe)//(002)_(TiC),and[100]_(Fe)//[100]_(TiC).The effects of single and co-doping of alloying elements(Mn,Cr,Mo,Ni,Cu and Si)on the interface bonding behavior of TiC/Fe in composites were investigated in conjunction with first principles.The results demonstrate that the interface between TiC and matrix is continuous and stable.Compared to the undoped TiC/Fe interface,single-doping Mn,Cr,and Mo can improve the stability of TiC/Fe interface and enhance tensile strength.Conversely,single-doping with Ni,Cu,and Si reduced the interface stability and marginally reduces tensile strength.Relative to the undoped and singly Ni-doped TiC/Fe interfaces,the co-doping Ni-Mo boosts binding energy and separation work at the TiC/Fe interface,which is conducive to the interface bonding between TiC_(P)and matrix,and thus improves the mechanical properties of composites.Thus,in the alloying design of TiC particle reinforced low-alloy SMCs,incorporating Mn,Cr,Mo,and Ni into matrix can enhance the overall mechanical properties of composites. 展开更多
关键词 TiC particle-reinforced steel matrix composites alloying elements FIRST-PRINCIPLES interface behavior CO-DOPING
在线阅读 下载PDF
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
6
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites 被引量:13
7
作者 张云鹤 武高辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2148-2151,共4页
Two kinds of unidirectional PAN M40 carbon fiber (55%, volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion p... Two kinds of unidirectional PAN M40 carbon fiber (55%, volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion properties were investigated. Results showed that the combination between aluminum alloy and fibers was well in two composites and interface reaction in M40/5A06Al composite was weaker than that in M40/6061Al composite. Coefficients of thermal expansion (CTE) of M40/Al composites varied approximately from (1.45-2.68)×10^-6 K^-1 to (0.35-1.44)×10^-6 K^-1 between 20℃ and 450℃, and decreased slowly with the increase of temperature. In addition, the CTE of M40/6061Al composite was lower than that of M40/SA06Al composite. It was observed that fibers were protruded significantly from the matrix after thermal expansion, which demonstrated the existence of interface sliding between fiber and matrix during the thermal expansion. It was believed that weak interracial reaction resulted in a higher CTE. It was found that the experimental CTEs were closer to the predicted values by Schapery model. 展开更多
关键词 aluminum matrix composites thermal expansion coefficient of thermal expansion interface
在线阅读 下载PDF
Effects of Nitridation on Properties of SiC Fiber and Interface of Ti Matrix Composite 被引量:1
8
作者 NanlinSHI Z.X.Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第6期563-565,共3页
Prenitridation of the TiBx coating surface of the Sigma SM1240 SiC fiber can form more stable compounds at the surface and obstruct the release of boron atoms into the Ti-based alloy matrix. The effect of nitridation ... Prenitridation of the TiBx coating surface of the Sigma SM1240 SiC fiber can form more stable compounds at the surface and obstruct the release of boron atoms into the Ti-based alloy matrix. The effect of nitridation on the tensile strength of the fiber was investigated in this work. Nitridation could degrade the tensile strength of the SiC fiber if the treating temperature and time are not optimized. The chemical reaction between the W core and SiC and the modification of fiber microstructure during the nitridation are responsible for the degradation in strength. The strength can be maintained by further optimization of the treating temperature and time. Therefore, stabilizing the surface of TiBx coating and hence the interface of the SiCf/Ti composite by the nitridation of the SiC fiber is a feasible technique for practical applications. 展开更多
关键词 SiC fiber Surface coating NITRIDATION Tensile strength interface
在线阅读 下载PDF
Effect of interface debonding on matrix multicracking evolution of fiber-reinfroced ceramic-matrix composites
9
作者 LI Long-biao 《航空动力学报》 EI CAS CSCD 北大核心 2016年第3期527-538,共12页
An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan... An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites. 展开更多
关键词 ceramic-matrix composites(CMCs) matrix cracking interface debonding MICROMECHANICS critical matrix strain energy
原文传递
The Effects of Interfaces on Stress Transfer in Short Fiber Reinforced Metal Matrix Composites
10
作者 康国政 高庆 刘世楷 《Journal of Modern Transportation》 1998年第1期48-53,共6页
In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite ... In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly. 展开更多
关键词 metal matrix composites interface stress transfer finite element method
在线阅读 下载PDF
Thermomechanical Stress in the Evolution of Shear of Fiber-Matrix Interface Composite Material
11
作者 Dalila Remaoun Ahmed Boutaous 《Materials Sciences and Applications》 2011年第5期399-403,共5页
This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior ... This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior by establishing a new mathematical model that describes the variation of shear stress along the interface. This model has been implemented in code in C++. The results revealed that the shear of the interface increases with temperature. This increase is partly due to the difference in expansion coefficient between fiber and matrix. The composite studied is T300/914;Carbon-Epoxy. 展开更多
关键词 interface fiber matrix Thermal EXPANSION SHEAR Stress
在线阅读 下载PDF
Effect of Al_(2)O_(3)fiber on twin intersections-induced dynamic recrystallization in fine-grained TiAl matrix composite 被引量:3
12
作者 Yaofeng Luo Yan Wang +2 位作者 Li Wang Bin Liu Yong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this s... Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this study,an Avrami kinetics model for DRX was established,which was capable of predicting the DRX fraction accurately.In addition,the effect of Al_(2)O_(3)short fiber on the DRX mechanisms of TiAl matrix composite during the isothermal compression was investigated for the first time.The re-sults showed that other than inhibiting DRX by particles in the TiAl matrix composites,the addition of Al_(2)O_(3)short fiber accelerated a novel DRX process,which was induced by twinning and twin intersec-tions(TDRX).Thus,this composite exhibited a higher DRX rate than that of the as-cast TiAl monolithic alloy.The origin of the twin intersection and TDRX for the composite was revealed.The stress concentration near the Al_(2)O_(3)fiber was above the critical shear stress for twinning and thus was favorable for the formation of twinning and twin intersections.The high stored strain energy at the regions of twins and twin intersections provided the driving force for TDRX.TDRX accelerated the grain refinement in the TiAl matrix near the Al_(2)O_(3)fiber.The present findings would provide a new perspective on DRX mechanisms,and provide the scientific guidance for optimizing the microstructures of TiAl matrix composites. 展开更多
关键词 TiAl matrix composite Al_(2)O_(3)fiber Twin intersection Dynamic recrystallization
原文传递
Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure 被引量:1
13
作者 Jing-Peng Xiong Yi-Qi Zeng +3 位作者 Jin-Long Liu Wei-Cheng Wang Lan Luo Yong Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期467-483,共17页
The interfacial structure plays an important role in the mechanical properties of magnesium matrix composite(MMCs)reinforced with graphene nanosheet(GNS)due to their poor wettability with the Mg matrix.An interface de... The interfacial structure plays an important role in the mechanical properties of magnesium matrix composite(MMCs)reinforced with graphene nanosheet(GNS)due to their poor wettability with the Mg matrix.An interface design strategy was proposed to form the semi-coherent interfacial structure with superior bonding strength.The lattice mismatch and interfacial bonding strength between Mg/rare earth oxide/carbon were utilized as key characteristics to evaluate the interfacial structure.Lanthanum oxide(La2O3)was selected as the intermediate candidate due to its low lattice mismatch and high interfacial bonding strength.To identify the interfacial structure of Mg/La2O3/graphene,first-principles calculations were conducted to calculate the ideal work of separation and electronic structure of the interfaces.Results demonstrated the presence of strong ionic and covalent interactions at the interface,which theoretically verified the strong interfacial bonding strength among Mg/La2O3/graphene interfaces.To experimentally validate the interface strength,MMCs with the interface structure of Mg/La2O3/GNS were developed.The formation of in-situ La2O3 led to the successful attainment of semi-coherent structures between Mg/La2O3 and La2O3/GNS,resulting in high strength and good ductility of the composite.Overall,this work proposes a new approach to interface design in MMCs with an enhancement of mechanical properties. 展开更多
关键词 interface design strategy Magnesium matrix composite Graphene nanosheets Semi-coherent interface Mechanical properties
原文传递
Improvement of the matrix and the interface quality of a Cu/Al composite by the MARB process 被引量:9
14
作者 XU Rongchang TANG Di REN Xueping WANG Xiaohong WEN Yonghong 《Rare Metals》 SCIE EI CAS CSCD 2007年第3期230-235,共6页
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of... The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well. 展开更多
关键词 matrix accumulative roll bonding Cu/Al composite material interface bonding diffusion annealing
在线阅读 下载PDF
INTERFACE REACTION OF TiC_p-REINFORCED Ti-MATRIX COMPOSITE 被引量:3
15
作者 Zeng Quanpu, Mao Xiaonan, Lu Feng 《中国有色金属学会会刊:英文版》 CSCD 1997年第4期81-84,共4页
INTERFACEREACTIONOFTiCpREINFORCEDTiMATRIXCOMPOSITE①ZengQuanpu,MaoXiaonan,LuFengNorthwestInstituteforNonferou... INTERFACEREACTIONOFTiCpREINFORCEDTiMATRIXCOMPOSITE①ZengQuanpu,MaoXiaonan,LuFengNorthwestInstituteforNonferousMetalResearch,... 展开更多
关键词 TI matrix composites TIC interface REACTION
在线阅读 下载PDF
Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface 被引量:7
16
作者 Xianliang Hou Shun Yao +2 位作者 Zhen Wang Changqing Fang Tiehu Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期182-190,共9页
A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfull... A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfully prepared via hydrothermal method and it was further treated with coupling agent KH-550 to improve interfacial interaction between polylactic acid(PLA)and basalt fibers(BF).It was demonstrated that the introduction of BFS could increase the crystallization of PLA and resulted in forming trans-crystallization based on TG and DSC results.The tensile strength of PLA/BF composites raised from 39 MPa to 62.5 MPa with increasing the fiber loading from 1 wt%to 10 wt%.Furthermore,the interfacial interaction could be effectively improved by assembling SiO_(2)(especially with 250 nm in diameter)on BF surface to build mechanical locking,which could keep the PLA matrix in place during the mechanical deformation with the tensile strength value raised from 62.5 MPa to 74.0 MPa.It is noticeable that the impact and flexural properties were effectively increased with the incorporation of in-situ SiO_(2) nanoparticles.The further KH-550 treatment made a positive impact as well.For instance,the impact strength and flexural strength of the sample with SiO_(2) and KH-550 modification were improved to 22.49 k J/m^(2) and 146.83 MPa and it enhanced about 42.16%and 41.04%than those of neat PLA,respectively.Therefore,an efficient enhancement of mechanical performance was achieved and this concept of assembling in-situ SiO_(2) on silica-based fiber as a modifier was a novel and simple path to design the interfacial construction and properties of the polymer composites. 展开更多
关键词 Poly(lactic acid) Basalt fiber Silica nanoparticles In-situ assembled interface interaction
原文传递
In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces
17
作者 HE Jing-zong CHEN Shi +2 位作者 MA Zheng-kun LU Yong-gen WU Qi-lin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期703-714,共12页
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u... A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology. 展开更多
关键词 Thermal Raman mapping Stress distribution Carbon fiber Carbon nanotube interface
在线阅读 下载PDF
Interface-dominated mechanical behavior in advanced metal matrix composites 被引量:3
18
作者 Qiang Guo Yifan Han Di Zhang 《Nano Materials Science》 CAS 2020年第1期66-71,共6页
Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure ... Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure and properties of the reinforcement/matrix interface play a crucial role.This article reviews recent developments in measuring the interfacial properties in advanced MMCs,with an emphasis on the use of micro-/nano-mechanical testing approaches.It is shown that,with the novel in situ and ex situ experimental capability,researchers can now obtain some of the critical interfacial properties as well as the effects of reinforcement/matrix interfaces on the composites’deformation and failure mechanisms that were unattainable previously by conventional methodologies.Moreover,the micro-/nano-mechanical testing platform allows for both fundamental and applied research on the composites’mechanical performance under service conditions,which is considered a promising and emerging research direction. 展开更多
关键词 METAL matrix COMPOSITES interface Mechanical behavior NANOSTRUCTURE Strengthening
在线阅读 下载PDF
Cooperative enhancement of mechanical and tribological properties through tailoring TiN transition interface in boron nitride nanosheets reinforced copper composites
19
作者 Zhong-Hua Li Liang Liu +5 位作者 Xin You Jian-Hong Yi Rui Bao Ming-Yi Zhu Song Lu Jun-Jun Pai 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期5202-5215,共14页
Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resista... Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resistance.Herein,BNNS/Cu composites were fabricated by the powder metallurgy route,matrix-alloying(adding 1.0 wt%Ti)strategy was adopted to improve the interfacial wettability and strengthen interface adhesion.A typical"sandwich"-like multiply interface structure involving TiN transition layers,BNNS and Cu matrix had been well constructed through the rational heat treatment(900℃ for 120 min).Additionally,nano-sized TiB whisker was in situ formed in the vicinity of the interface,it had linked the BNNS-Cu-TiN multiply interface,which played a role of"threading the needle"and significantly strengthened the multi-interfaces bonding.This specific interface structure was finely characterized,and the formation mechanism of solid-state interfacial reaction feature was proposed.The results demonstrated that the ultimate tensile strength(UTS)of BNNS/Cu-(Ti)-900℃ increased from 248 to 530 MPa(increased by 114%),and the coefficient of friction(COF)decreased from 0.51 to 0.28 than pure Cu.This work highlights the importance of interface configuration design,which contributes to the development of CMCs with prominent comprehensive properties. 展开更多
关键词 Copper matrix composites Boron nitride nanosheets interface structure Mechanical and frictional properties
原文传递
Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu(-Ag)alloys 被引量:4
20
作者 Xingpu Zhang Zhongkang Han +5 位作者 Liangliang Xu Haohan Ni Xiaojuan Hu Haofei Zhou Yu Zou Jiangwei Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期157-170,共14页
Evolution of precipitate and precipitate/matrix interface in artificially aged Al-Zn-Mg-Cu(-Ag)alloys has been systematically studied.In the early stage of ageing,Ag,as a fast diffuser,can promote the formation of sol... Evolution of precipitate and precipitate/matrix interface in artificially aged Al-Zn-Mg-Cu(-Ag)alloys has been systematically studied.In the early stage of ageing,Ag,as a fast diffuser,can promote the formation of solute pairs and small clusters.Solute clusters are further demonstrated to be able to act as precursors forη’precipitates by in-situ STEM heating.With prolonged ageing time,the precipitate/matrix interface evolves from the Zn-dominated interface between early-stageη’and Al matrix to the Zn and Mg co-segregatedη’/Al andη_(2)/Al interfaces.Theη’/Al interfacial layers are shown to precede the formation ofη’,while theη_(2)/Al interfaces are found to be closely related to the thickening process ofη_(2)and the involved particular atomic movements are specified.Experimental observations and DFT calculations re-veal that forη’andη_(2),Ag can dissolve into the precipitate as well as locate at the precipitate/matrix interface without showing preference.For Cu,its dissolution in the precipitate and segregation on the interface mainly occur forη_(2)rather thanη’.The incorporation of Ag and Cu does not change the defined precipitate structure. 展开更多
关键词 Al-Zn-Mg-Cu(Ag)alloys Precipitation Precipitate/matrix interface Scanning transmission electron microscopy Density functional theory
原文传递
上一页 1 2 167 下一页 到第
使用帮助 返回顶部