The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tangg...The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes,the interaction between surface energy budget and freeze-thaw processes.The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations.Annual average net radiation(R_(n))for 2010 was 86.5 W m^(-2),with the largest being in July and smallest in November.Surface soil heat flux(G_(0))was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m^(-2).Variations in R_(n) and G_(0) were closely related to freeze-thaw processes.Sensible heat flux(H)was the main energy budget component during cold seasons,whereas latent heat flux(LE)dominated surface energy distribution in warm seasons.Freeze-thaw processes,snow cover,precipitation,and surface conditions were important influence factors for surface energy flux.Albedo was strongly dependent on soil moisture content and ground surface state,increasing significantly when land surface was covered with deep snow,and exhibited negative correlation with surface soil moisture content.Energy variation was significantly related to active layer thaw depth.Soil heat balance coefficient K was>1 during the investigation time period,indicating the permafrost in the Tanggula area tended to degrade.展开更多
The Stefan equation provides a useful and widely used method for predicting the depth of thawing and freezing in a soil where little site-specific information is available. The original Stefan equation was derived for...The Stefan equation provides a useful and widely used method for predicting the depth of thawing and freezing in a soil where little site-specific information is available. The original Stefan equation was derived for only a homogeneous medium, and some algorithms have been developed for its use in a multilayered system. However, although the Stefan equation was derived more than 100 years ago, there is not a unified understanding for its use in a multilayered system. This paper examines the use of the Stefan equation in multilayered soil, based on comparing three algorithms(JL-algorithm, NM-algorithm, and XG-algorithm). We conclude that the JL and NM algorithms are incorrect, as they arose from flawed mathematical derivations. Both of these algorithms failed to recognize that the thawing depth in a multilayered soil is a piecewise function and not a continuous function of time. This work asserts that the XG-algorithm is a correct and rigorous method to determine the freezing–thawing fronts in multilayered soil.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42071093,41671070)the National Key Research and Development Program of China(2020YFA0608500)+1 种基金the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2020)the National Natural Science Foundation of China(Grant Nos.41941015,42071093,41690142,41771076,41601078,and 41571069)。
文摘The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes,the interaction between surface energy budget and freeze-thaw processes.The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations.Annual average net radiation(R_(n))for 2010 was 86.5 W m^(-2),with the largest being in July and smallest in November.Surface soil heat flux(G_(0))was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m^(-2).Variations in R_(n) and G_(0) were closely related to freeze-thaw processes.Sensible heat flux(H)was the main energy budget component during cold seasons,whereas latent heat flux(LE)dominated surface energy distribution in warm seasons.Freeze-thaw processes,snow cover,precipitation,and surface conditions were important influence factors for surface energy flux.Albedo was strongly dependent on soil moisture content and ground surface state,increasing significantly when land surface was covered with deep snow,and exhibited negative correlation with surface soil moisture content.Energy variation was significantly related to active layer thaw depth.Soil heat balance coefficient K was>1 during the investigation time period,indicating the permafrost in the Tanggula area tended to degrade.
基金supported by grants from the National Natural Science Foundation of China (41671068, 41421061, and 41771040)the State Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2017)the Hundred Talents Program of the Chinese Academy of Sciences granted to Chang Wei Xie (51Y551831)
文摘The Stefan equation provides a useful and widely used method for predicting the depth of thawing and freezing in a soil where little site-specific information is available. The original Stefan equation was derived for only a homogeneous medium, and some algorithms have been developed for its use in a multilayered system. However, although the Stefan equation was derived more than 100 years ago, there is not a unified understanding for its use in a multilayered system. This paper examines the use of the Stefan equation in multilayered soil, based on comparing three algorithms(JL-algorithm, NM-algorithm, and XG-algorithm). We conclude that the JL and NM algorithms are incorrect, as they arose from flawed mathematical derivations. Both of these algorithms failed to recognize that the thawing depth in a multilayered soil is a piecewise function and not a continuous function of time. This work asserts that the XG-algorithm is a correct and rigorous method to determine the freezing–thawing fronts in multilayered soil.