Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This...Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This review systematically demonstrates optimization strategies,advanced manufacturing methods,typical applications,and outlooks of technical challenges toward surface texturing for friction reduction.Firstly,the lubricated contact models of microtextures are introduced.Then,we provide a framework of state-of-the-art research on synergistic friction optimization strategies of microtexture structures,surface treatments,liquid lubricants,and external energy fields.A comparative analysis evaluates the strengths and weaknesses of manufacturing techniques commonly employed for microtextured surfaces.The latest research advancements in microtextures in different application scenarios are highlighted.Finally,the challenges and directions of future research on surface texturing technology are briefly addressed.This review aims to elaborate on the worldwide progress in the optimization,manufacturing,and application of microtexture-enabled friction reduction technologies to promote their practical utilizations.展开更多
While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,du...While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,due to continuously varied geometries of laser-matter incidence.In the present work,we propose a novel manufacturing system of 7-axis on-the-fly LST for complex curved surface,based on the integrated synchronization of 5-axis linkage motion platform with 2-axis galvanometer.Specifically,the algorithm for decomposing spatial texture trajectory on curved surface into low-frequency and high-frequency parts is established,based on which the kinematic model of synchronized 7-axis system is developed to derive the motion of each axis in both 5-axis linkage motion platform and 2-axis galvanometer simultaneously.Subsequently,the synchronized 7-axis LST system is experimentally realized,including the setup of mechanical stages integrated with optical path,the configuration of numerical control unit,and the development of processing software.Finally,case study of 7-axis on-the-fly LST of freeform aluminum surface is performed,and the advantages in terms of processing efficiency and texturing accuracy over 5-axis linkage LST are demonstrated.The correlation of reduced following errors between mechanical stages with the promoted performance of curved surface texturing by the 7-axis on-the-fly LST is further analyzed.Current work provides a feasible solution for establishing the manufacturing system for high performance LST of complex curved surface.展开更多
The Textile Technology Centre is the pride of Heberlein.State-of-the-art equipment and a team of top experts guarantee the highest standards of support for customers.Heberlein is the leading provider of air interlacin...The Textile Technology Centre is the pride of Heberlein.State-of-the-art equipment and a team of top experts guarantee the highest standards of support for customers.Heberlein is the leading provider of air interlacing and air texturing jets for synthetic continuous filament yarns and its clients enjoy added value in the form of practical help and guidance on textile processes and economic issues,with a special focus on filament yarn applications.展开更多
基金the National Natural Science Foundation of China(Award No.07120016)support by the Dalian University of Technology(DUT)(Award Nos.82232022,82232043,and DUT22LAB404)AVIC Shenyang Aircraft Company(Award No.12020641 and 12020642)。
文摘Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This review systematically demonstrates optimization strategies,advanced manufacturing methods,typical applications,and outlooks of technical challenges toward surface texturing for friction reduction.Firstly,the lubricated contact models of microtextures are introduced.Then,we provide a framework of state-of-the-art research on synergistic friction optimization strategies of microtexture structures,surface treatments,liquid lubricants,and external energy fields.A comparative analysis evaluates the strengths and weaknesses of manufacturing techniques commonly employed for microtextured surfaces.The latest research advancements in microtextures in different application scenarios are highlighted.Finally,the challenges and directions of future research on surface texturing technology are briefly addressed.This review aims to elaborate on the worldwide progress in the optimization,manufacturing,and application of microtexture-enabled friction reduction technologies to promote their practical utilizations.
基金the support by the Harbin Manufacturing Science and Technology Innovation Talent Project(No.2023CXRCGD035)the Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology in Huazhong University of Science and Technology,China(No.IMETKF2023012).
文摘While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,due to continuously varied geometries of laser-matter incidence.In the present work,we propose a novel manufacturing system of 7-axis on-the-fly LST for complex curved surface,based on the integrated synchronization of 5-axis linkage motion platform with 2-axis galvanometer.Specifically,the algorithm for decomposing spatial texture trajectory on curved surface into low-frequency and high-frequency parts is established,based on which the kinematic model of synchronized 7-axis system is developed to derive the motion of each axis in both 5-axis linkage motion platform and 2-axis galvanometer simultaneously.Subsequently,the synchronized 7-axis LST system is experimentally realized,including the setup of mechanical stages integrated with optical path,the configuration of numerical control unit,and the development of processing software.Finally,case study of 7-axis on-the-fly LST of freeform aluminum surface is performed,and the advantages in terms of processing efficiency and texturing accuracy over 5-axis linkage LST are demonstrated.The correlation of reduced following errors between mechanical stages with the promoted performance of curved surface texturing by the 7-axis on-the-fly LST is further analyzed.Current work provides a feasible solution for establishing the manufacturing system for high performance LST of complex curved surface.
文摘The Textile Technology Centre is the pride of Heberlein.State-of-the-art equipment and a team of top experts guarantee the highest standards of support for customers.Heberlein is the leading provider of air interlacing and air texturing jets for synthetic continuous filament yarns and its clients enjoy added value in the form of practical help and guidance on textile processes and economic issues,with a special focus on filament yarn applications.