With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While th...With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While this conventional approach can expedite the energy conversion process,it also results in irreversible ecological hazards.To solve the above problems,the use of renewable clean energy is proposed.In this paper,a droplet generator is proposed to integrate the rotating structure with the body effect power generation for the tiny energy of raindrops.This droplet generator can increase the speed of droplets leaving the dielectric layer and reduce the effect of continuously falling droplets on the droplet-based electricity generator(DEG).It is demonstrated that the instantaneous power of the generator can reach 0.9 mW,which can be a good solution to the power supply needs of some small power supply equipment,and thereafter is beneficial to the self-powering of the equipment in rainy days.展开更多
Experimental and numerical analyses for the effect of the thickness of gap generator blank(GGB) on the formability of the outer blanks were investigated. The thickness of the GGB has the greatest impact on the thinn...Experimental and numerical analyses for the effect of the thickness of gap generator blank(GGB) on the formability of the outer blanks were investigated. The thickness of the GGB has the greatest impact on the thinning of the lowest blank. In addition, the friction at different regions and the additional interlayer contacts can also affect the thinning of different regions as well as increase the punch force. This work will enhance the understanding of simultaneous multi-layered blanks forming and will help the composite design engineers to tailor requirement-specific hybrid parts such as fiber metal laminates(FMLs) and functionally graded structures(FGSs) for hi-tech applications.展开更多
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app...To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.展开更多
In recent studies,critical research interest exists in the thermo-mechanical analysis of the friction stir welding(FSW)process by numerical simulation.In this review,the thermo-mechanical analysis for FSW is overviewe...In recent studies,critical research interest exists in the thermo-mechanical analysis of the friction stir welding(FSW)process by numerical simulation.In this review,the thermo-mechanical analysis for FSW is overviewed regarding the computational approaches,the heat generation,the temperature,and the material fl ow behavior.Current concerns,challenges,and opportunities in current studies are discussed considering the application of the thermo-mechanical analysis.Generally,larger computational scale and better computational effi ciency are required to allow better spatial resolution in future analysis.The concepts and approaches demonstrated in the thermo-mechanical analysis for FSW open up quantitative prospects for the design of the FSW process.展开更多
In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate wa...In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on theadvancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for thealuminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWedjoints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopyand X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed jointswas investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formedin FSWed joints were A14Cu9 and AI2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatlydepended on the grain size, intermetallic compounds and copper pieces in SZ.展开更多
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-el...This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.展开更多
On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and ...On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and friction coefficient was ascertained during test. The relationship between the SGVs and the tribological characteristics shows that monitoring SGVs of rubbing pairs can be used as a new on line means for evaluating wear of metallic materials. Moreover, this method has an advantage over the electrical resistance method, which needs externally applied voltage and may introduce some influences on the surface states.展开更多
文摘With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While this conventional approach can expedite the energy conversion process,it also results in irreversible ecological hazards.To solve the above problems,the use of renewable clean energy is proposed.In this paper,a droplet generator is proposed to integrate the rotating structure with the body effect power generation for the tiny energy of raindrops.This droplet generator can increase the speed of droplets leaving the dielectric layer and reduce the effect of continuously falling droplets on the droplet-based electricity generator(DEG).It is demonstrated that the instantaneous power of the generator can reach 0.9 mW,which can be a good solution to the power supply needs of some small power supply equipment,and thereafter is beneficial to the self-powering of the equipment in rainy days.
基金Project(2010DFA52030)supported by the International Scientific Cooperation,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Experimental and numerical analyses for the effect of the thickness of gap generator blank(GGB) on the formability of the outer blanks were investigated. The thickness of the GGB has the greatest impact on the thinning of the lowest blank. In addition, the friction at different regions and the additional interlayer contacts can also affect the thinning of different regions as well as increase the punch force. This work will enhance the understanding of simultaneous multi-layered blanks forming and will help the composite design engineers to tailor requirement-specific hybrid parts such as fiber metal laminates(FMLs) and functionally graded structures(FGSs) for hi-tech applications.
基金co-supported by the National Natural Science Foundation of China(No.52177028)in part by the Aeronautical Science Foundation of China(No.201907051002)。
文摘To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51705280 and 51375259).
文摘In recent studies,critical research interest exists in the thermo-mechanical analysis of the friction stir welding(FSW)process by numerical simulation.In this review,the thermo-mechanical analysis for FSW is overviewed regarding the computational approaches,the heat generation,the temperature,and the material fl ow behavior.Current concerns,challenges,and opportunities in current studies are discussed considering the application of the thermo-mechanical analysis.Generally,larger computational scale and better computational effi ciency are required to allow better spatial resolution in future analysis.The concepts and approaches demonstrated in the thermo-mechanical analysis for FSW open up quantitative prospects for the design of the FSW process.
文摘In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on theadvancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for thealuminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWedjoints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopyand X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed jointswas investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formedin FSWed joints were A14Cu9 and AI2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatlydepended on the grain size, intermetallic compounds and copper pieces in SZ.
文摘This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.
文摘On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and friction coefficient was ascertained during test. The relationship between the SGVs and the tribological characteristics shows that monitoring SGVs of rubbing pairs can be used as a new on line means for evaluating wear of metallic materials. Moreover, this method has an advantage over the electrical resistance method, which needs externally applied voltage and may introduce some influences on the surface states.