期刊文献+
共找到33,298篇文章
< 1 2 250 >
每页显示 20 50 100
Multilingual Text Summarization in Healthcare Using Pre-Trained Transformer-Based Language Models
1
作者 Josua Käser Thomas Nagy +1 位作者 Patrick Stirnemann Thomas Hanne 《Computers, Materials & Continua》 2025年第4期201-217,共17页
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t... We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains. 展开更多
关键词 text summarization pre-trained transformer-based language models large language models technical healthcare texts natural language processing
在线阅读 下载PDF
MPFToD:a modularized pre-training framework for consistency identification in task-oriented dialogue
2
作者 Libo QIN Shijue HUANG +3 位作者 Qiguang CHEN Qian LIU Wanxiang CHE Ruifeng XU 《Frontiers of Computer Science》 2025年第10期1-11,共11页
Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to... Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to explore a pre-training paradigm for CI-ToD.Nevertheless,pre-training for CI-ToD is non-trivial because it requires a large amount of multi-turn KB-grounded dialogues,which are extremely hard to collect.To alleviate the data scarcity problem for pre-training,we introduce a modularized pre-training framework(MPFToD),which is capable of utilizing large amounts of KB-free dialogues.Specifically,such modularization allows us to decouple CI-ToD into three sub-modules and propose three pre-training tasks including(i)query response matching pre-training;(ii)dialogue history consistent identification pre-training;and(iii)KB mask language modeling to enhance different abilities of CI-ToD model.As different sub-tasks are solved separately,MPFToD can learn from large amounts of KB-free dialogues for different modules,which are much easier to obtain.Results on the CI-ToD benchmark show that MPFToD pushes the state-of-the-art performance from 56.3%to 61.0%.Furthermore,we show its transferability with promising performance on other downstream tasks(i.e.,dialog act recognition,sentiment classification and table fact checking). 展开更多
关键词 task-oriented dialogue consistency identification modularized pre-training framework
原文传递
Big Texture Dataset Synthesized Based on Gradient and Convolution Kernels Using Pre-Trained Deep Neural Networks
3
作者 Farhan A.Alenizi Faten Khalid Karim +1 位作者 Alaa R.Al-Shamasneh Mohammad Hossein Shakoor 《Computer Modeling in Engineering & Sciences》 2025年第8期1793-1829,共37页
Deep neural networks provide accurate results for most applications.However,they need a big dataset to train properly.Providing a big dataset is a significant challenge in most applications.Image augmentation refers t... Deep neural networks provide accurate results for most applications.However,they need a big dataset to train properly.Providing a big dataset is a significant challenge in most applications.Image augmentation refers to techniques that increase the amount of image data.Common operations for image augmentation include changes in illumination,rotation,contrast,size,viewing angle,and others.Recently,Generative Adversarial Networks(GANs)have been employed for image generation.However,like image augmentation methods,GAN approaches can only generate images that are similar to the original images.Therefore,they also cannot generate new classes of data.Texture images presentmore challenges than general images,and generating textures is more complex than creating other types of images.This study proposes a gradient-based deep neural network method that generates a new class of texture.It is possible to rapidly generate new classes of textures using different kernels from pre-trained deep networks.After generating new textures for each class,the number of textures increases through image augmentation.During this process,several techniques are proposed to automatically remove incomplete and similar textures that are created.The proposed method is faster than some well-known generative networks by around 4 to 10 times.In addition,the quality of the generated textures surpasses that of these networks.The proposed method can generate textures that surpass those of someGANs and parametric models in certain image qualitymetrics.It can provide a big texture dataset to train deep networks.A new big texture dataset is created artificially using the proposed method.This dataset is approximately 2 GB in size and comprises 30,000 textures,each 150×150 pixels in size,organized into 600 classes.It is uploaded to the Kaggle site and Google Drive.This dataset is called BigTex.Compared to other texture datasets,the proposed dataset is the largest and can serve as a comprehensive texture dataset for training more powerful deep neural networks and mitigating overfitting. 展开更多
关键词 Big texture dataset data generation pre-trained deep neural network
在线阅读 下载PDF
RNSQL:融合逆规范化的Text2SQL生成
4
作者 帖军 范子琪 +2 位作者 孙翀 郑禄 朱柏尔 《计算机应用与软件》 北大核心 2025年第9期31-37,86,共8页
Text2SQL是自然语言处理科研领域中的一项重要任务,在研究智能问答系统中发挥关键性的作用,其核心任务是将自然语言描述的问题自动转换为SQL查询语句。当前研究重点为提高SQL子句任务的匹配准确率,但忽略了SQL的句法生成的正确性,涉及... Text2SQL是自然语言处理科研领域中的一项重要任务,在研究智能问答系统中发挥关键性的作用,其核心任务是将自然语言描述的问题自动转换为SQL查询语句。当前研究重点为提高SQL子句任务的匹配准确率,但忽略了SQL的句法生成的正确性,涉及多表连接的SQL生成仍存在大量错误。因此,提出一种基于神经网络的Text2SQL方法,该方法通过逆规范化技术,对数据库模式进行重构,关注SQL句法生成的正确性,称为逆规范化网络(Reverse Normalization SQL,RNSQL)。经理论分析和在公共数据集Spider上实验验证,RNSQL能有效提升Text2SQL任务的质量。 展开更多
关键词 逆规范化 语义解析 text2SQL 槽填充
在线阅读 下载PDF
J-TEXT托卡马克相干成像光谱诊断系统设计
5
作者 聂林 吴骏彬 +5 位作者 龙婷 雷驰 严伟 李杨波 张霄翼 J-TEXT实验团队 《核聚变与等离子体物理》 北大核心 2025年第3期273-279,共7页
相干成像光谱诊断是一种采用高速相机拍摄方式对等离子体边界的杂质离子流速进行二维成像的被动光谱诊断,对研究托卡马克边界和偏滤器等离子体环向旋转、杂质离子分布有着重要的作用。J-TEXT装置成功研制并部署了一套主要基于CⅢ线(464.... 相干成像光谱诊断是一种采用高速相机拍摄方式对等离子体边界的杂质离子流速进行二维成像的被动光谱诊断,对研究托卡马克边界和偏滤器等离子体环向旋转、杂质离子分布有着重要的作用。J-TEXT装置成功研制并部署了一套主要基于CⅢ线(464.88 nm)的相干成像光谱诊断系统。该系统的光学视场设计为12°,主要针对J-TEXT强场侧边缘等离子体区域进行观测。在性能指标方面,系统具备2 ms的时间分辨率,同时实现了11 mm(垂直方向)空间分辨率。目前该诊断系统已完成实验测试,并成功获取了等离子体边界的关键数据,为开展边界物理研究提供了新的实验手段。 展开更多
关键词 相干成像光谱诊断 环向速度 J-text托卡马克
在线阅读 下载PDF
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
6
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional NEURAL network (CNN) DISTRIBUTED architecture REMOTE SENSING images (RSIs) TARGET classification pre-training
在线阅读 下载PDF
中文短文本情感分类:融入位置感知强化的Transformer-TextCNN模型研究
7
作者 李浩君 王耀东 汪旭辉 《计算机工程与应用》 北大核心 2025年第11期216-226,共11页
针对当前中文短文本情感分类模型文本位置信息与关键特征获取不足的问题,提出了一种融入位置感知强化的Transformer-TextCNN情感分类模型。利用BERT可学习绝对位置编码与正弦位置编码强化模型的位置感知能力,融合Transformer的全局上下... 针对当前中文短文本情感分类模型文本位置信息与关键特征获取不足的问题,提出了一种融入位置感知强化的Transformer-TextCNN情感分类模型。利用BERT可学习绝对位置编码与正弦位置编码强化模型的位置感知能力,融合Transformer的全局上下文理解能力与TextCNN的局部特征捕捉能力,分别提取中文短文本全局特征与局部特征,构建位置感知强化与特征协同的情感特征输出服务,实现中文短文本情感准确分类。实验结果表明,该模型在视频弹幕数据集上的准确率达到90.23%,在SMP2020数据集上的准确率达到87.38%。相较于最优的基线模型,准确率在视频弹幕数据集和SMP2020数据集上分别提高了1.98和0.44个百分点,在中文短文本情感分类任务中取得更好的分类效果。 展开更多
关键词 文本情感分类 BERT TRANSFORMER textCNN 位置编码
在线阅读 下载PDF
Knowledge Enhanced Pre-Training Model for Vision-Language-Navigation Task 被引量:1
8
作者 HUANG Jitao ZENG Guohui +3 位作者 HUANG Bo GAO Yongbin LIU Jin SHI Zhicai 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第2期147-155,共9页
Vision-Language-Navigation(VLN) task is a cross-modality task that combines natural language processing and computer vision. This task requires the agent to automatically move to the destination according to the natur... Vision-Language-Navigation(VLN) task is a cross-modality task that combines natural language processing and computer vision. This task requires the agent to automatically move to the destination according to the natural language instruction and the observed surrounding visual information. To make the best decision, in every step during the navigation, the agent should pay more attention to understanding the objects, the object attributes, and the object relationships. But most current methods process all received textual and visual information equally. Therefore, this paper integrates more detailed semantic connections between visual and textual information through three pre-training tasks(object prediction, object attributes prediction, and object relationship prediction). The model will learn better fusion representation and alignment between these two types of information to improve the success rate(SR) and generalization. The experiments show that compared with the former baseline models, the SR on the unseen validation set(Val Unseen) increased by 7%, and the SR weighted by path length(SPL) increased by 7%;the SR on the test set(Test) increased 4%, SPL increased by 3%. 展开更多
关键词 pre-training cross-modality deep learning scene graph
原文传递
基于Transformer和Text-CNN的日志异常检测
9
作者 尹春勇 张小虎 《计算机工程与科学》 北大核心 2025年第3期448-458,共11页
日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统... 日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统的基于Transformer的方法,难以捕捉日志序列的局部特征,针对上述问题,提出了基于Transformer和Text-CNN的日志异常检测方法LogTC。首先,通过规则匹配将日志转换成结构化的日志数据,并保留日志语句中的有效信息;其次,根据日志特性采用固定窗口或会话窗口将日志语句划分为日志序列;再次,使用自然语言处理技术Sentence-BERT生成日志语句的语义化表示;最后,将日志序列的语义化向量输入到LogTC日志异常检测模型中进行检测。实验结果表明,LogTC能够有效地检测日志数据中的异常,且在2个数据集上都取得了较好的结果。 展开更多
关键词 日志异常检测 深度学习 词嵌入 TRANSFORMER text-CNN
在线阅读 下载PDF
Pre-training Assessment Through the Web
10
作者 Kenneth Wong Reggie Kwan Jimmy SF Chan 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期297-,共1页
Web-based training is growing quickly in popularit y for professionals in industrial organizations and large enterprises. The savings in cost and time are significant. The instructor-led trainings are bounded by time ... Web-based training is growing quickly in popularit y for professionals in industrial organizations and large enterprises. The savings in cost and time are significant. The instructor-led trainings are bounded by time and place, not to mention the cost involved in traveling, accommodation and training venue. However, in the most online training courses, all trainees are given same training materials and teaching paradigms. The problem of differentia ting the trainees’ abilities is the main concern. We need a pre-training test t o identify and classify of the weaknesses and strengths of differentiate trainee s so as to devise an appropriate training programs for the trainees. Adaptation of a Web-based Computer adaptive Test (CAT) for the pre-training test make the web-based training more efficient. The advantages of CAT are self-pacing, eff iciency, time and cost saving, immediate scoring and feedback, accuracy and secu rity, etc (Rudner, 1998; UMN, 1999; Novell, 2000; Linacre, 2000; Windowsglore, 2 000). Moreover, Web-based CAT also gives greater flexibility and convenience. T his paper describes how this CAT tool is built, how it helps instructor identify the strengths and weaknesses of trainees, and how to assure quality on the CAT system. 展开更多
关键词 CAT TEST pre-training Assessment Through the Web
在线阅读 下载PDF
A Modified CycleGAN for Multi-Organ Ultrasound Image Enhancement via Unpaired Pre-Training
11
作者 Haonan Han Bingyu Yang +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期194-203,共10页
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual... Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices. 展开更多
关键词 ultrasound image enhancement handheld devices unpaired images pre-train and finetune cycleGAN
在线阅读 下载PDF
GeoNER:Geological Named Entity Recognition with Enriched Domain Pre-Training Model and Adversarial Training
12
作者 MA Kai HU Xinxin +4 位作者 TIAN Miao TAN Yongjian ZHENG Shuai TAO Liufeng QIU Qinjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1404-1417,共14页
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders... As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information. 展开更多
关键词 geological named entity recognition geological report adversarial training confrontation training global pointer pre-training model
在线阅读 下载PDF
基于Self-Attention和TextCNN-BiLSTM的中文评论文本情感分析模型 被引量:3
13
作者 龙宇 李秋生 《石河子大学学报(自然科学版)》 北大核心 2025年第1期111-121,共11页
目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文... 目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文本情感分析方法。该方法首先采用文本卷积神经网络(TextCNN)来提取局部特征,并利用双向长短期记忆网络(BiLSTM)来捕捉序列信息,从而综合考虑了全局和局部信息,在特征融合阶段,再采用自注意力机制来动态地融合不同层次的特征表示,对不同尺度特征进行加权,从而提高重要特征的响应。实验结果表明,所提出的模型在家电商品中文评论语料和谭松波酒店评论语料数据集上的准确率分别达到93.79%和90.05%,相较于基准模型分别提高0.69%~3.59%和4.44%~11.70%,优于传统的基于卷积神经网络(Convolutional Neural Networks, CNN)、BiLSTM或CNN-BiLSTM等的情感分析模型。 展开更多
关键词 自注意力机制 中文评论文本 深度学习 情感分析
在线阅读 下载PDF
Adapter Based on Pre-Trained Language Models for Classification of Medical Text
14
作者 Quan Li 《Journal of Electronic Research and Application》 2024年第3期129-134,共6页
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa... We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach. 展开更多
关键词 Classification of medical text ADAPTER pre-trained language model
在线阅读 下载PDF
From text to image:challenges in integrating vision into ChatGPT for medical image interpretation
15
作者 Shunsuke Koga Wei Du 《Neural Regeneration Research》 SCIE CAS 2025年第2期487-488,共2页
Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive te... Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023). 展开更多
关键词 IMAGE DIAGNOSIS text
在线阅读 下载PDF
基于Text2Vec_AE_KMeans的微博话题聚类分析方法
16
作者 万文桐 黄润才 《智能计算机与应用》 2025年第5期82-89,共8页
传统的话题聚类分析方法使用静态词向量对微博文本进行建模,对微博文本不规范表达、一词多义等特点应对不佳,从而影响聚类效果与话题表述。针对此,提出了一种基于Text2Vec_AE_KMeans的深度文本特征提取与聚类的微博话题聚类分析方法。首... 传统的话题聚类分析方法使用静态词向量对微博文本进行建模,对微博文本不规范表达、一词多义等特点应对不佳,从而影响聚类效果与话题表述。针对此,提出了一种基于Text2Vec_AE_KMeans的深度文本特征提取与聚类的微博话题聚类分析方法。首先,使用基于MacBert预训练模型与CoSENT文本语句建模方法设计的Text2Vec预训练模型,对微博话题文本进行文本语义表示,从而改进静态词向量在文本特征建模方面的不足;然后,通过带有非线性激活函数的AutoEncoder降维网络对高维非线性文本特征进行降维;最后,在话题聚类分析的过程中采用KMeans_C-TF-IDF算法进行面向微博文本的聚类分析,从聚类簇的角度把握话题分布信息。在真实微博话题数据集上,相较于传统静态词向量建模方法,本文提出的方法在聚类评价指标上表现优异,生成的话题信息可识别性较好。 展开更多
关键词 话题聚类分析 CoSENT text2Vec 自编码器
在线阅读 下载PDF
全球家纺行业的韧性:Heimtextil 2025展览规模创新高 被引量:1
17
作者 钟梦夏 《中国纺织》 2025年第1期96-97,共2页
1月14日至17日,Heimtextil 2025法兰克福国际家用及商用纺织品展览会(以下简称“Heimtextil 2025”)在德国法兰克福展览中心隆重举行。这场为期四天的展会,来自全球142个国家和地区的3000多家展商聚集于此,50000多名观众参与其中,展商... 1月14日至17日,Heimtextil 2025法兰克福国际家用及商用纺织品展览会(以下简称“Heimtextil 2025”)在德国法兰克福展览中心隆重举行。这场为期四天的展会,来自全球142个国家和地区的3000多家展商聚集于此,50000多名观众参与其中,展商数量、观众数量、观众满意度等多项数据再创新记录。 展开更多
关键词 展览规模 家纺行业 法兰克福展览 观众满意度 text 纺织品 He
在线阅读 下载PDF
面向研究生招生咨询的中文Text-to-SQL模型
18
作者 王庆丰 李旭 +1 位作者 姚春龙 程腾腾 《计算机工程》 北大核心 2025年第3期362-368,共7页
研究生招生咨询是一种具有代表性的短时间高频次问答应用场景。针对现有基于词向量等方法的招生问答系统返回答案不够精确,以及每年需要更新问题库的问题,引入了基于文本转结构化查询语言(Text-to-SQL)技术的RESDSQL模型,可将自然语言... 研究生招生咨询是一种具有代表性的短时间高频次问答应用场景。针对现有基于词向量等方法的招生问答系统返回答案不够精确,以及每年需要更新问题库的问题,引入了基于文本转结构化查询语言(Text-to-SQL)技术的RESDSQL模型,可将自然语言问题转化为SQL语句后到结构化数据库中查询答案并返回。搜集了研究生招生场景中的高频咨询问题,根据3所高校真实招生数据,构建问题与SQL语句模板,通过填充模板的方式构建数据集,共有训练集1501条、测试集386条。将RESDSQL的RoBERTa模型替换为具有更强多语言生成能力的XLM-RoBERTa模型、T5模型替换为mT5模型,并在目标领域数据集上进行微调,在招生领域问题上取得了较高的准确率,在mT5-large模型上执行正确率为0.95,精确匹配率为1。与基于ChatGPT3.5模型、使用零样本提示的C3SQL方法对比,该模型性能与成本均更优。 展开更多
关键词 中文文本转结构化查询语言 自然语言查询 中文SQL语句生成 预训练模型 text-to-SQL数据集
在线阅读 下载PDF
GSPT-CVAE: A New Controlled Long Text Generation Method Based on T-CVAE
19
作者 Tian Zhao Jun Tu +1 位作者 Puzheng Quan Ruisheng Xiong 《Computers, Materials & Continua》 2025年第7期1351-1377,共27页
Aiming at the problems of incomplete characterization of text relations,poor guidance of potential representations,and low quality of model generation in the field of controllable long text generation,this paper propo... Aiming at the problems of incomplete characterization of text relations,poor guidance of potential representations,and low quality of model generation in the field of controllable long text generation,this paper proposes a new GSPT-CVAE model(Graph Structured Processing,Single Vector,and Potential Attention Com-puting Transformer-Based Conditioned Variational Autoencoder model).The model obtains a more comprehensive representation of textual relations by graph-structured processing of the input text,and at the same time obtains a single vector representation by weighted merging of the vector sequences after graph-structured processing to get an effective potential representation.In the process of potential representation guiding text generation,the model adopts a combination of traditional embedding and potential attention calculation to give full play to the guiding role of potential representation for generating text,to improve the controllability and effectiveness of text generation.The experimental results show that the model has excellent representation learning ability and can learn rich and useful textual relationship representations.The model also achieves satisfactory results in the effectiveness and controllability of text generation and can generate long texts that match the given constraints.The ROUGE-1 F1 score of this model is 0.243,the ROUGE-2 F1 score is 0.041,the ROUGE-L F1 score is 0.22,and the PPL-Word score is 34.303,which gives the GSPT-CVAE model a certain advantage over the baseline model.Meanwhile,this paper compares this model with the state-of-the-art generative models T5,GPT-4,Llama2,and so on,and the experimental results show that the GSPT-CVAE model has a certain competitiveness. 展开更多
关键词 Controllable text generation textual graph structuring text relationships potential characterization
在线阅读 下载PDF
OCR-Assisted Masked BERT for Homoglyph Restoration towards Multiple Phishing Text Downstream Tasks
20
作者 Hanyong Lee Ye-Chan Park Jaesung Lee 《Computers, Materials & Continua》 2025年第12期4977-4993,共17页
Restoring texts corrupted by visually perturbed homoglyph characters presents significant challenges to conventional Natural Language Processing(NLP)systems,primarily due to ambiguities arising from characters that ap... Restoring texts corrupted by visually perturbed homoglyph characters presents significant challenges to conventional Natural Language Processing(NLP)systems,primarily due to ambiguities arising from characters that appear visually similar yet differ semantically.Traditional text restoration methods struggle with these homoglyph perturbations due to limitations such as a lack of contextual understanding and difficulty in handling cases where one character maps to multiple candidates.To address these issues,we propose an Optical Character Recognition(OCR)-assisted masked Bidirectional Encoder Representations from Transformers(BERT)model specifically designed for homoglyph-perturbed text restoration.Our method integrates OCR preprocessing with a character-level BERT architecture,where OCR preprocessing transforms visually perturbed characters into their approximate alphabetic equivalents,significantly reducing multi-correspondence ambiguities.Subsequently,the character-level BERT leverages bidirectional contextual information to accurately resolve remaining ambiguities by predicting intended characters based on surrounding semantic cues.Extensive experiments conducted on realistic phishing email datasets demonstrate that the proposed method significantly outperforms existing restoration techniques,including OCR-based,dictionarybased,and traditional BERT-based approaches,achieving a word-level restoration accuracy of up to 99.59%in fine-tuned settings.Additionally,our approach exhibits robust performance in zero-shot scenarios and maintains effectiveness under low-resource conditions.Further evaluations across multiple downstream tasks,such as part-ofspeech tagging,chunking,toxic comment classification,and homoglyph detection under conditions of severe visual perturbation(up to 40%),confirm the method’s generalizability and applicability.Our proposed hybrid approach,combining OCR preprocessing with character-level contextual modeling,represents a scalable and practical solution for mitigating visually adversarial text attacks,thereby enhancing the security and reliability of NLP systems in real-world applications. 展开更多
关键词 Homoglyph attack text restoration token-level correction text restoration character-level BERT OCR-assisted NLP
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部