Small molecule inhibitors have dominated the pharmaceutical landscape for a long time as the primary therapeutic paradigm targeting pathogenic proteins.However,their efficacy heavily relies on the amino acid compositi...Small molecule inhibitors have dominated the pharmaceutical landscape for a long time as the primary therapeutic paradigm targeting pathogenic proteins.However,their efficacy heavily relies on the amino acid composition and spatial constitution of proteins,rendering them susceptible to drug resistance and failing to target undruggable proteins.In recent years,the advent of targeted protein degradation(TPD)technology has captured substantial attention from both industry and academia.Employing an event-driven mode,TPD offers a novel approach to eliminate pathogenic proteins by promoting their degrada-tion,thus circumventing the limitations associated with traditional small molecule inhibitors.Hydropho-bic tag tethering degrader(HyTTD)technology represents one such TPD approach that is currently in the burgeoning stage.HyTTDs employ endogenous protein degradation systems to induce the degrada-tion of target proteins through the proteasome pathway,which displays significant potential for medical value.In this review,we provide a comprehensive overview of the development history and the reported mechanism of action of HyTTDs.Additionally,we delve into the physiological roles,structure-activity re-lationships,and medical implications of HyTTDs targeting various disease-associated proteins.Moreover,we propose insights into the challenges that necessitate resolution for the successful development of HyTTDs,with the ultimate goal of initiating a new age of clinical treatment leveraging the immense po-tential of HyTTDs.展开更多
BACKGROUND The management of idiopathic scoliosis(IS)in skeletally immature patients should aim at three-dimensional deformity correction,without compromising spinal and chest growth.In 2019,the US Food and Drug Admin...BACKGROUND The management of idiopathic scoliosis(IS)in skeletally immature patients should aim at three-dimensional deformity correction,without compromising spinal and chest growth.In 2019,the US Food and Drug Administration approved the first instrumentation system for anterior vertebral body tethering(AVBT),under a Humanitarian Device Exception,for skeletally immature patients with curves having a Cobb angle between 35°and 65°.AIM To summarize current evidence about the efficacy and safety of AVBT in the management of IS in skeletally immature patients.METHODS From January 2014 to January 2021,Ovid Medline,Embase,Cochrane Library,Scopus,Web of Science,Google Scholar and PubMed were searched to identify relevant studies.The methodological quality of the studies was evaluated and relevant data were extracted.RESULTS Seven clinical trials recruiting 163 patients were included in the present review.Five studies out of seven were classified as high quality,whereas the remaining two studies were classified as moderate quality.A total of 151 of 163 AVBT procedures were performed in the thoracic spine,and the remaining 12 tethering in the lumbar spine.Only 117 of 163(71.8%)patients had a nonprogressive curve at skeletal maturity.Twenty-three of 163(14.11%)patients required unplanned revision surgery within the follow-up period.Conversion to posterior spinal fusion(PSF)was performed in 18 of 163(11%)patients.CONCLUSION AVBT is a promising growth-friendly technique for treatment of IS in growing patients.However,it has moderate success and perioperative complications,revision and conversion to PSF.展开更多
Mitochondrial injury and endoplasmic reticulum(ER)stress are considered to be the key mechanisms of renal ischemia-reperfusion(I/R)injury.Mitochondria are membrane-bound organelles that form close physical contact wit...Mitochondrial injury and endoplasmic reticulum(ER)stress are considered to be the key mechanisms of renal ischemia-reperfusion(I/R)injury.Mitochondria are membrane-bound organelles that form close physical contact with a specific domain of the ER,known as mitochondrial-associated membranes.The close physical contact between them is mainly restrained by ER-mitochondria tethering complexes,which can play an important role in mitochondrial damage,ER stress,lipid homeostasis,and cell death.Several ER-mitochondria tethering complex components are involved in the process of renal I/R injury.A better understanding of the physical and functional interaction between ER and mitochondria is helpful to further clarify the mechanism of renal I/R injury and provide potential therapeutic targets.In this review,we aim to describe the structure of the tethering complex and elucidate its pivotal role in renal I/R injury by summarizing its role in many important mechanisms,such as mitophagy,mitochondrial fission,mitochondrial fusion,apoptosis and necrosis,ER stress,mitochondrial substance transport,and lipid metabolism.展开更多
Endoplasmic reticulum(ER)and mitochondria are tubular organelles with a characteristic“network structure”that facilitates the formation of inter-organellar connections.As a result,mitochondria-associated ER membrane...Endoplasmic reticulum(ER)and mitochondria are tubular organelles with a characteristic“network structure”that facilitates the formation of inter-organellar connections.As a result,mitochondria-associated ER membranes(MAMs),a subdomain of the ER that is tightly linked to and communicates with mitochondria,serve multiple physiological functions including lipid synthesis and exchange,calcium signaling,bioenergetics,and apoptosis.Importantly,emerging evidence suggests that the abnormality and dysfunction of MAMs have been involved in various neurodegenerative disorders including Alzheimer’s disease,amyotrophic lateral sclerosis,and Parkinson’s disease.This review will focus on the architecture and function of MAMs and its involvement in the neurodegenerative diseases.展开更多
Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson's disease, dystonia, and epilepsy. Genetic studies have identified a homozygo...Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson's disease, dystonia, and epilepsy. Genetic studies have identified a homozygous truncation mutation in Trakl that causes hypertonia in mice. Moreover, elevated Trakl protein expression is associated with several types of cancers and variants in Trakl are linked to childhood absence epilepsy in humans. Despite the importance of Trakl in health and disease, the mechanisms of Trakl action remain unclear and the pathogenic effects of Trakl mutation are unknown. Here we report that Trakl has a crucial function in regulation of mitochondrial fusion. Depletion of Trakl inhibits mitochondrial fusion, result- ing in mitochondrial fragmentation, whereas overex- pression of Trakl elongates and enlarges mitochondria. Our analyses revealed that Trakl interacts and colocal- izes with mitofusins on the outer mitochondrial mem- brane and functions with mitofusins to promote mitochondrial tethering and fusion. Furthermore, Trakl is required for stress-induced mitochondrial hyperfu- sion and pro-survival response. We found that hyper- tonia-associated mutation impairs Trakl mitochondrial localization and its ability to facilitate mitochondrial tethering and fusion. Our findings uncover a novel function of Trakl as a regulator of mitochondrial fusion and provide evidence linking dysregulated mitochon- drial dynamics to hypertonia pathogenesis.展开更多
Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Prof.Gao Song(高嵩)from the State Key Laboratory of Oncology in South China,Sun Yat-sen University Cancer C...Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Prof.Gao Song(高嵩)from the State Key Laboratory of Oncology in South China,Sun Yat-sen University Cancer Center,Guangzhou,recently reported the molecular mechanism of mitochondrial tethering by dynamin-related GTPase MFN1upon GTP binding and hydrolysis,in Nature(2017,542:372—376).展开更多
This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy ...This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.展开更多
The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tether...The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.展开更多
Rh/SiO2 catalysts with tethered-phosphines with different alkyl spacer lengths have been prepared,tested and characterized.Lengthening the alkyl spacer of the tethered-phosphine improved the flexibility of tethered-ph...Rh/SiO2 catalysts with tethered-phosphines with different alkyl spacer lengths have been prepared,tested and characterized.Lengthening the alkyl spacer of the tethered-phosphine improved the flexibility of tethered-phospine,promoted the formation of active species and enhanced the activity of hydroformylation over other tethered-phosphine modified Rh/SiO2 catalysts.展开更多
We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), ...We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), in the South China Sea. The TS of caged or tethered fish (n=76 total) was measured using a Simrad EY60 portable scientific echosounder at 120 kHz. We evaluated the relationship between TS and total length (TL, cm) for the three species. This is the first attempt to use split-beam acoustics to measure single-fish TS in the South China Sea by Chinese researchers. Our results will improve the accuracy and precision of acoustic abundance estimates of commercially important species and fi.trther the development of underwater acoustic survey techniques in fisheries in the South China Sea.展开更多
Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense...Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense fog weather on December 13-14 in 2007 were analyzed,as well as their evolution laws in the formation and dispersion of fog,and the boundary layer characteristics of winter dense fog in Nanjing were revealed,while the development of fog was simulated by means of mesoscale numerical model.The results showed that the formation and dispersion of fog was greatly affected by inversion and humidity in the surface layer,and the wind direction in the surface layer also had effect on the formation and dispersion of advection fog.Mesoscale numerical model could preferably simulate the evolution of temperature,humidity,vertical speed in the development of fog,and the simulation of water vapor content in the fog could forecast the formation and dispersion of fog.展开更多
The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and...The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and interesting problems related to their dynamics, control, and physical implementation. Over the past decades, this exciting topic has attracted significant attention from many researchers and gained a vast number of analytical, numerical and experimental achievements with a focus on the two essential aspects of both dynamics and control. This review article presents the historic background and recent hot topics for the space tethers, and introduces the dynamics and control of TSSs in a progressive manner, from basic operating principles to the state-of-the-art achievements.展开更多
Tethered satellite systems(TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deploym...Tethered satellite systems(TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deployment of tethers is considered a crucial technology for operation of a TSS. Both past orbiting experiments and numerical results have shown that oscillations of the deployed tether due to the Coriolis force and environmental perturbations are inevitable and that the impact between the space tether and end-body at the end of the deployment process leads to complicated nonlinear phenomena. Hence, a set of suitable control methods plays a fundamental role in tether deployment. This review article summarizes previous work on aspects of the dynamics, control, and ground-based experiments of tether deployment. The relevant basic principles, analytical expressions, simulation cases, and experimental results are presented as well.展开更多
For the study of the non-linear response of inclined tethers subjected to parametric excitation in submerged floating tunnels, a theoretical model for coupled tube-tether vibration is developed. Upon the assumption th...For the study of the non-linear response of inclined tethers subjected to parametric excitation in submerged floating tunnels, a theoretical model for coupled tube-tether vibration is developed. Upon the assumption that the static equilibri- um position of the tether is a quadratic parabola, the governing differential equations of the tether motion are derived by use of the Hamihon principle. An approximate numerical solution is obtained by use of Galerkin method and Runge-kutta method. The results show that, when the static equilibrium position of the tether is assumed to be. a quadratic parabola, the tether sag effect on its vibration may be reflected; the tether sag results in the asymmetry of tether vibration amplitude ; for the reduction of the tether amplitude, the buoyant unit weight of the tether should approach to zero as far as possible during the design.展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.82103978,81874286)the Natural Science Foundation of Jiangsu Province(No.BK20210423)“Double-First-Class”University Project(Nos.CPU 2018PZQ02,CPU 2018GY07).
文摘Small molecule inhibitors have dominated the pharmaceutical landscape for a long time as the primary therapeutic paradigm targeting pathogenic proteins.However,their efficacy heavily relies on the amino acid composition and spatial constitution of proteins,rendering them susceptible to drug resistance and failing to target undruggable proteins.In recent years,the advent of targeted protein degradation(TPD)technology has captured substantial attention from both industry and academia.Employing an event-driven mode,TPD offers a novel approach to eliminate pathogenic proteins by promoting their degrada-tion,thus circumventing the limitations associated with traditional small molecule inhibitors.Hydropho-bic tag tethering degrader(HyTTD)technology represents one such TPD approach that is currently in the burgeoning stage.HyTTDs employ endogenous protein degradation systems to induce the degrada-tion of target proteins through the proteasome pathway,which displays significant potential for medical value.In this review,we provide a comprehensive overview of the development history and the reported mechanism of action of HyTTDs.Additionally,we delve into the physiological roles,structure-activity re-lationships,and medical implications of HyTTDs targeting various disease-associated proteins.Moreover,we propose insights into the challenges that necessitate resolution for the successful development of HyTTDs,with the ultimate goal of initiating a new age of clinical treatment leveraging the immense po-tential of HyTTDs.
文摘BACKGROUND The management of idiopathic scoliosis(IS)in skeletally immature patients should aim at three-dimensional deformity correction,without compromising spinal and chest growth.In 2019,the US Food and Drug Administration approved the first instrumentation system for anterior vertebral body tethering(AVBT),under a Humanitarian Device Exception,for skeletally immature patients with curves having a Cobb angle between 35°and 65°.AIM To summarize current evidence about the efficacy and safety of AVBT in the management of IS in skeletally immature patients.METHODS From January 2014 to January 2021,Ovid Medline,Embase,Cochrane Library,Scopus,Web of Science,Google Scholar and PubMed were searched to identify relevant studies.The methodological quality of the studies was evaluated and relevant data were extracted.RESULTS Seven clinical trials recruiting 163 patients were included in the present review.Five studies out of seven were classified as high quality,whereas the remaining two studies were classified as moderate quality.A total of 151 of 163 AVBT procedures were performed in the thoracic spine,and the remaining 12 tethering in the lumbar spine.Only 117 of 163(71.8%)patients had a nonprogressive curve at skeletal maturity.Twenty-three of 163(14.11%)patients required unplanned revision surgery within the follow-up period.Conversion to posterior spinal fusion(PSF)was performed in 18 of 163(11%)patients.CONCLUSION AVBT is a promising growth-friendly technique for treatment of IS in growing patients.However,it has moderate success and perioperative complications,revision and conversion to PSF.
基金grants from the National Natural Science Foundation of China(Nos.61971441,61671479,and 81804056)the National Key R&D Program of China(No.2016YFC1305500)。
文摘Mitochondrial injury and endoplasmic reticulum(ER)stress are considered to be the key mechanisms of renal ischemia-reperfusion(I/R)injury.Mitochondria are membrane-bound organelles that form close physical contact with a specific domain of the ER,known as mitochondrial-associated membranes.The close physical contact between them is mainly restrained by ER-mitochondria tethering complexes,which can play an important role in mitochondrial damage,ER stress,lipid homeostasis,and cell death.Several ER-mitochondria tethering complex components are involved in the process of renal I/R injury.A better understanding of the physical and functional interaction between ER and mitochondria is helpful to further clarify the mechanism of renal I/R injury and provide potential therapeutic targets.In this review,we aim to describe the structure of the tethering complex and elucidate its pivotal role in renal I/R injury by summarizing its role in many important mechanisms,such as mitophagy,mitochondrial fission,mitochondrial fusion,apoptosis and necrosis,ER stress,mitochondrial substance transport,and lipid metabolism.
基金This work is partly supported by National Institute of Health(grant numbers NS083385 and AG049479 to XZ)Alzheimer’s Association(AARG-16-443584 to XZ).
文摘Endoplasmic reticulum(ER)and mitochondria are tubular organelles with a characteristic“network structure”that facilitates the formation of inter-organellar connections.As a result,mitochondria-associated ER membranes(MAMs),a subdomain of the ER that is tightly linked to and communicates with mitochondria,serve multiple physiological functions including lipid synthesis and exchange,calcium signaling,bioenergetics,and apoptosis.Importantly,emerging evidence suggests that the abnormality and dysfunction of MAMs have been involved in various neurodegenerative disorders including Alzheimer’s disease,amyotrophic lateral sclerosis,and Parkinson’s disease.This review will focus on the architecture and function of MAMs and its involvement in the neurodegenerative diseases.
文摘Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson's disease, dystonia, and epilepsy. Genetic studies have identified a homozygous truncation mutation in Trakl that causes hypertonia in mice. Moreover, elevated Trakl protein expression is associated with several types of cancers and variants in Trakl are linked to childhood absence epilepsy in humans. Despite the importance of Trakl in health and disease, the mechanisms of Trakl action remain unclear and the pathogenic effects of Trakl mutation are unknown. Here we report that Trakl has a crucial function in regulation of mitochondrial fusion. Depletion of Trakl inhibits mitochondrial fusion, result- ing in mitochondrial fragmentation, whereas overex- pression of Trakl elongates and enlarges mitochondria. Our analyses revealed that Trakl interacts and colocal- izes with mitofusins on the outer mitochondrial mem- brane and functions with mitofusins to promote mitochondrial tethering and fusion. Furthermore, Trakl is required for stress-induced mitochondrial hyperfu- sion and pro-survival response. We found that hyper- tonia-associated mutation impairs Trakl mitochondrial localization and its ability to facilitate mitochondrial tethering and fusion. Our findings uncover a novel function of Trakl as a regulator of mitochondrial fusion and provide evidence linking dysregulated mitochon- drial dynamics to hypertonia pathogenesis.
文摘Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Prof.Gao Song(高嵩)from the State Key Laboratory of Oncology in South China,Sun Yat-sen University Cancer Center,Guangzhou,recently reported the molecular mechanism of mitochondrial tethering by dynamin-related GTPase MFN1upon GTP binding and hydrolysis,in Nature(2017,542:372—376).
基金supported by the Discovery grant(No.RGPIN-2024-06290)the CREATE grant(No.504156)of the Natural Sciences and Engineering Research Council of Canada.
文摘This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62173107 and 12202058)the Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology(Grant No.BYESS2023344).
文摘The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.
基金financially supported by the National Natural Science Foundation of China(21273227,20903090)~~
文摘Rh/SiO2 catalysts with tethered-phosphines with different alkyl spacer lengths have been prepared,tested and characterized.Lengthening the alkyl spacer of the tethered-phosphine improved the flexibility of tethered-phospine,promoted the formation of active species and enhanced the activity of hydroformylation over other tethered-phosphine modified Rh/SiO2 catalysts.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA100303)the Science and Technology Project of Guangdong Province, China (No.2007B020708001)+1 种基金the Special Funds for Operating Expenses of Basic Researches in the Central Nonprofit Scientific Research Institutes (Nos.2008TS01, 2007ZD03)the Natural Science Foundation of Guangdong Province, China (No. 04001263)
文摘We measured the target strength (TS) of three commercial fish species: whitespotted spinefoot (Siganus canaliculatus), black porgy (Acanthopagrus schlegelii), and creek red bream (Lutjanus argentimaculatus), in the South China Sea. The TS of caged or tethered fish (n=76 total) was measured using a Simrad EY60 portable scientific echosounder at 120 kHz. We evaluated the relationship between TS and total length (TL, cm) for the three species. This is the first attempt to use split-beam acoustics to measure single-fish TS in the South China Sea by Chinese researchers. Our results will improve the accuracy and precision of acoustic abundance estimates of commercially important species and fi.trther the development of underwater acoustic survey techniques in fisheries in the South China Sea.
文摘Based on the boundary layer data of winter dense fog in 2007 from Nanjing University of Information Science & Technology,the profile characteristics of temperature,wind direction,wind speed and humidity in a dense fog weather on December 13-14 in 2007 were analyzed,as well as their evolution laws in the formation and dispersion of fog,and the boundary layer characteristics of winter dense fog in Nanjing were revealed,while the development of fog was simulated by means of mesoscale numerical model.The results showed that the formation and dispersion of fog was greatly affected by inversion and humidity in the surface layer,and the wind direction in the surface layer also had effect on the formation and dispersion of advection fog.Mesoscale numerical model could preferably simulate the evolution of temperature,humidity,vertical speed in the development of fog,and the simulation of water vapor content in the fog could forecast the formation and dispersion of fog.
基金the National Natural Science Foundation of China(10672073)the Innovation Fund for Graduate Students,Nanjing University of Aeronautics and Astronautics
文摘The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and interesting problems related to their dynamics, control, and physical implementation. Over the past decades, this exciting topic has attracted significant attention from many researchers and gained a vast number of analytical, numerical and experimental achievements with a focus on the two essential aspects of both dynamics and control. This review article presents the historic background and recent hot topics for the space tethers, and introduces the dynamics and control of TSSs in a progressive manner, from basic operating principles to the state-of-the-art achievements.
基金funded by the National Natural Science Foundation of China (11672125, 11732006)the Civil Aerospace Pre-research Project of China (D010305)+1 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics, MCMS-0116K01)the Fundamental Research Funds for the Central Universities (NS2016009)
文摘Tethered satellite systems(TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deployment of tethers is considered a crucial technology for operation of a TSS. Both past orbiting experiments and numerical results have shown that oscillations of the deployed tether due to the Coriolis force and environmental perturbations are inevitable and that the impact between the space tether and end-body at the end of the deployment process leads to complicated nonlinear phenomena. Hence, a set of suitable control methods plays a fundamental role in tether deployment. This review article summarizes previous work on aspects of the dynamics, control, and ground-based experiments of tether deployment. The relevant basic principles, analytical expressions, simulation cases, and experimental results are presented as well.
基金supported by the Program for New Century Excellent Talents in University of China(Grant No.NCET-06-0270)the National Natural Science Foundation of China (Grant No.50578032)
文摘For the study of the non-linear response of inclined tethers subjected to parametric excitation in submerged floating tunnels, a theoretical model for coupled tube-tether vibration is developed. Upon the assumption that the static equilibri- um position of the tether is a quadratic parabola, the governing differential equations of the tether motion are derived by use of the Hamihon principle. An approximate numerical solution is obtained by use of Galerkin method and Runge-kutta method. The results show that, when the static equilibrium position of the tether is assumed to be. a quadratic parabola, the tether sag effect on its vibration may be reflected; the tether sag results in the asymmetry of tether vibration amplitude ; for the reduction of the tether amplitude, the buoyant unit weight of the tether should approach to zero as far as possible during the design.