To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test...To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.展开更多
Software fault positioning is one of the most effective activities in program debugging. In this paper, we propose a model-based fault positioning method to detect the faults of embedded program without source code. T...Software fault positioning is one of the most effective activities in program debugging. In this paper, we propose a model-based fault positioning method to detect the faults of embedded program without source code. The system takes the machine code of embedded software as input and translates the code into high-level language C with the software reverse engineering program. Then, the static analysis on the high-level program is taken to obtain a control flow graph(CFG), which is denoted as a node-tree and each node is a basic block. According to the faults found by the field testing, we construct a fault model by extracting the features of the faulty code obtained by ranking the Ochiai coefficient of basic blocks. The model can be effectively used to locate the faults of the embedded program. Our method is evaluated on ST chips of the smart meter with the corresponding source code. The experiment shows that the proposed method has an effectiveness about 87% on the fault detection.展开更多
基金the National Natural Science Foundation of China (Nos. 50674083 and 51074162) for its financial support
文摘To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.
基金Supported by the National Natural Science Foundation of China(61303214)the Science and Technology Project of China State Grid Corp(KJ15-1-32)
文摘Software fault positioning is one of the most effective activities in program debugging. In this paper, we propose a model-based fault positioning method to detect the faults of embedded program without source code. The system takes the machine code of embedded software as input and translates the code into high-level language C with the software reverse engineering program. Then, the static analysis on the high-level program is taken to obtain a control flow graph(CFG), which is denoted as a node-tree and each node is a basic block. According to the faults found by the field testing, we construct a fault model by extracting the features of the faulty code obtained by ranking the Ochiai coefficient of basic blocks. The model can be effectively used to locate the faults of the embedded program. Our method is evaluated on ST chips of the smart meter with the corresponding source code. The experiment shows that the proposed method has an effectiveness about 87% on the fault detection.