The test scheme of static postponing time given in our actual national military test standard on shrapnels used to control riot is a nine-point test scheme on the combined action of three kinds of temperatures and thr...The test scheme of static postponing time given in our actual national military test standard on shrapnels used to control riot is a nine-point test scheme on the combined action of three kinds of temperatures and three kinds of pressures, the consumed ammunitions are more excessive. Statistic analysis and tentative checkout about a lot of test data are done, feasibility gists are put forward for optimizing of the test design scheme. The optimizing design and data analysis of test scheme of the item are done by managing uniformity design theory, two scientific and reasonable six-point test schemes are confirmed. The feasibility and reliability of the optimizing design schemes put forward above are proved ulteriorly by test validating. The gained schemes not only have good design uniformity and little ammunition wastage and meet the test demand, but also have better forecast ability for the result data of other points using the mathematic models from the actual test points.展开更多
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ...As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.展开更多
The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational i...The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational instability may occur for high vertical resolution versions if the stratification parameter C0 taken as a constant. In this paper, the possible cause leading to the instability is discussed and an improved scheme presented where C0 is generalized to be a function of both height and latitudes. Hence the reference atmosphere gets closer to the real atmosphere and the temperature deviation field to be expanded becomes smoother everywhere. Test by real case forecasts shows good computational stability of the new scheme and better prediction performance than-usual schemes of spectral model.展开更多
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rownt...A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.展开更多
为研究颗粒阻尼器布置方案对多层结构减震性能的影响,制作了缩尺比为1/5的三层钢框架模型结构,进行了5条天然波下的地震模拟振动台试验,研究并联式单向单颗粒阻尼器(Parallel Single-dimensional Single Particle Damper,PSSPD)的减震...为研究颗粒阻尼器布置方案对多层结构减震性能的影响,制作了缩尺比为1/5的三层钢框架模型结构,进行了5条天然波下的地震模拟振动台试验,研究并联式单向单颗粒阻尼器(Parallel Single-dimensional Single Particle Damper,PSSPD)的减震控制效果。基于试验获得的模型自振频率、阻尼比等动力特性设计3种PSSPD布置方案,分析不同布置方案下模型结构的试验现象及位移和加速度响应。试验结果表明:PSSPD对结构响应峰值减震率可达到43.43%,均方根减震率可达到38.18%,其对多层结构具有良好的减震控制效果;PSSPD对结构均方根的平均减震效果要优于对峰值的平均减震效果;PSSPD布置方案对其减震效果影响显著,且其减震性能与本身参数、受控结构振动特性、地震动参数之间的耦合关系复杂。最后,建立PSSPD在任意布置方案下受控结构的力学模型,提出其数值分析流程。数值计算结果和试验结果在位移峰值及均方根方面具有良好的吻合度。展开更多
文摘The test scheme of static postponing time given in our actual national military test standard on shrapnels used to control riot is a nine-point test scheme on the combined action of three kinds of temperatures and three kinds of pressures, the consumed ammunitions are more excessive. Statistic analysis and tentative checkout about a lot of test data are done, feasibility gists are put forward for optimizing of the test design scheme. The optimizing design and data analysis of test scheme of the item are done by managing uniformity design theory, two scientific and reasonable six-point test schemes are confirmed. The feasibility and reliability of the optimizing design schemes put forward above are proved ulteriorly by test validating. The gained schemes not only have good design uniformity and little ammunition wastage and meet the test demand, but also have better forecast ability for the result data of other points using the mathematic models from the actual test points.
基金supported in part by National Natural Science Foundation of China under Grant 62201087,Grant 62525101,in part by the National Key R&D Program of China under Grant 2023YFB2904803in part by the Guangdong Major Project of Basic and Applied Basic Research under Grant 2023B0303000001+1 种基金in part by the Natural Science Foundation of Beijing-Xiaomi Innovation Joint Foundation under Grant L243002in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Institute.
文摘As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.
基金This work has been carried out under the support of the Medium-range Numerical Weather Forecast research project
文摘The introduction of 'hydrostatic extraction' scheme, or 'standard stratification approximation', into spectral model gained some advantages compared with commonly used schemes. However, computational instability may occur for high vertical resolution versions if the stratification parameter C0 taken as a constant. In this paper, the possible cause leading to the instability is discussed and an improved scheme presented where C0 is generalized to be a function of both height and latitudes. Hence the reference atmosphere gets closer to the real atmosphere and the temperature deviation field to be expanded becomes smoother everywhere. Test by real case forecasts shows good computational stability of the new scheme and better prediction performance than-usual schemes of spectral model.
基金supported jointly by the National Science Foundation of China under Grant No.40305010oversea outstanding young scientist project No.2002-1-2 of Chinese Academy of Sciences.
文摘A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.
文摘为研究颗粒阻尼器布置方案对多层结构减震性能的影响,制作了缩尺比为1/5的三层钢框架模型结构,进行了5条天然波下的地震模拟振动台试验,研究并联式单向单颗粒阻尼器(Parallel Single-dimensional Single Particle Damper,PSSPD)的减震控制效果。基于试验获得的模型自振频率、阻尼比等动力特性设计3种PSSPD布置方案,分析不同布置方案下模型结构的试验现象及位移和加速度响应。试验结果表明:PSSPD对结构响应峰值减震率可达到43.43%,均方根减震率可达到38.18%,其对多层结构具有良好的减震控制效果;PSSPD对结构均方根的平均减震效果要优于对峰值的平均减震效果;PSSPD布置方案对其减震效果影响显著,且其减震性能与本身参数、受控结构振动特性、地震动参数之间的耦合关系复杂。最后,建立PSSPD在任意布置方案下受控结构的力学模型,提出其数值分析流程。数值计算结果和试验结果在位移峰值及均方根方面具有良好的吻合度。