Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c...Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.展开更多
This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testi...This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn.展开更多
The large transformer is pivotal equipment in an electric power supply system; Its partial discharge test and the induced voltage withstand test on large transformers are carried out at a frequency about twice the wor...The large transformer is pivotal equipment in an electric power supply system; Its partial discharge test and the induced voltage withstand test on large transformers are carried out at a frequency about twice the working frequency. If the magnetizing inductance cannot compensate for the stray capacitance, the test sample turns into a capacitive load and a capacitive rise exhibits in the testing circuit. For self-restoring insulation, a method has been recommended in IEC60-1 that an unapproved measuring system be calibrated by an approved system at a voltage not less than 50% of the rated testing voltage, and the result then be extrapolated linearly. It has been found that this method leads to great error due to the capacitive rise if it is not correctly used during a withstand voltage test under certain testing conditions, especiaUy for a test on high voltage transformers with large capacity. Since the withstand voltage test is the most important means to examine the operation reliability of a transformer, and it can be destructive to the insulation, a precise measurement must be guaranteed. In this paper a factor, named as the capacitive rise factor, is introduced to assess the rise. The voltage measurement error during the calibration is determined by the parameters of the test sample and the testing facilities, as well as the measuring point. Based on theoretical analysis in this paper, a novel method is suggested and demonstrated to estimate the error by using the capacitive rise factor and other known parame- ters of the testing circuit.展开更多
To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are ...To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.展开更多
When a statistical test of hypothesis for a population mean is performed, we are faced with the possibility of committing a Type II error by not rejecting the null hypothesis when in fact the population mean has chang...When a statistical test of hypothesis for a population mean is performed, we are faced with the possibility of committing a Type II error by not rejecting the null hypothesis when in fact the population mean has changed. We consider this issue and quantify matters in a manner that differs a bit from what is commonly done. In particular, we define the probability distribution function for Type II errors. We then explore some interesting properties that we have not seen mentioned elsewhere for this probability distribution function. Finally, we discuss several Maple procedures that can be used to perform various calculations using the distribution.展开更多
Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs...Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs), an SEE testing system with flexibility and robustness was developed at Heavy Ion Research Facility in Lanzhou(HIRFL). The system is compatible with various types of microelectronic devices and ICs, and supports plenty of complex and high-speed test schemes and plans for the irradiated devices under test(DUTs). Thanks to the combination of meticulous circuit design and the hardened logic design, the system has additional performances to avoid an overheated situation and irradiations by stray radiations. The system has been tested and verified by experiments for irradiating devices at HIRFL.展开更多
Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (K...Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regression model axe detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedasticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).展开更多
The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techni...The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techniques. A theoretical analysis of establishing these types of errors was made and compared to determination of False Positive, False Negative, True Positive and True Negative. Experimental laboratory detection methods used to detect Cryptosporidium spp. were used to highlight the relationship between hypothesis testing, sensitivity, specificity and predicted values. The study finds that, sensitivity and specificity for the two laboratory methods used for Cryptosporidium detection were low hence lowering the probability of detecting a “false null hypothesis” for the presence of cryptosporidium in the water samples using either Microscopic or PCR. Nevertheless, both procedures for cryptosporidium detection had higher “true negatives” increasing its probability of failing to reject a “true null hypothesis” with specificity of 1.00 for both Microscopic and PCR laboratory detection methods.展开更多
This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviat...This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.展开更多
This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power ...This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.展开更多
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to ...It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.展开更多
Technical college students often commit different oral errors in their English learning. The type of students'spoken English errors is analyzed in this paper and the common errors are classified into four groups: ...Technical college students often commit different oral errors in their English learning. The type of students'spoken English errors is analyzed in this paper and the common errors are classified into four groups: phonological errors, lexical errors, grammatical errors and pragmatic errors. The result shows that lexical errors and grammatical errors are more common for learners from technical colleges.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ...Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.展开更多
Although the step degree of nonlinearity has been introduced to conduct basic analysis and error propagation analysis for the pseudodynamic testing of nonlinear systems, it cannot be reliably used to select an appropr...Although the step degree of nonlinearity has been introduced to conduct basic analysis and error propagation analysis for the pseudodynamic testing of nonlinear systems, it cannot be reliably used to select an appropriate time step before performing a pseudodynamic test. Therefore, a novel parameter of instantaneous degree of nonlinearity is introduced to monitor the stiffness change at the end of a time step, and can thus be used to evaluate numerical and error propagation properties for nonlinear systems. Based on these properties, it is possible to select an appropriate time step to conduct a pseudodynamic test in advance. This possibility is very important in pseudodynamic testing, since the use of an arbitrary time step might lead to unreliable results or even destroy the test specimen. In this paper, guidelines are proposed for choosing an appropriate time step for accurate integration of nonlinear systems. These guidelines require estimation of the maximum instantaneous degree of nonlinearity and the solution of the initial natural frequency. The Newmark explicit method is chosen for this study. All the analytical results and the guidelines proposed are thoroughly confirmed with numerical examples.展开更多
The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It revi...The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It reviews the geodetic determination of a reference point and a base line used for the test measurements. The study describes the completed test measurements, and on the basis of results, it draws the conclusions for the accuracy of the investigated surveying methods. Finally, considering these accuracy measures, their possible application in mine surveying is also mentioned very shortly.展开更多
基金Supported by National Nature Science Foundation of China(Grant No.51175461)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Program for Zhejiang Leading Team of S&T Innovation of China(Grant No.2009R50008)
文摘Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
基金Supported by the National Natural Science Foundation of China (No. 40604001),the National High Technology Research and Development Program of China (No. 2007AA12Z312).Acknowledgement The authors thank Prof. Tao Benzao and Prof. Wang Xingzhou for several helpful suggestions during the preparation of this manuscript.
文摘This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn.
文摘The large transformer is pivotal equipment in an electric power supply system; Its partial discharge test and the induced voltage withstand test on large transformers are carried out at a frequency about twice the working frequency. If the magnetizing inductance cannot compensate for the stray capacitance, the test sample turns into a capacitive load and a capacitive rise exhibits in the testing circuit. For self-restoring insulation, a method has been recommended in IEC60-1 that an unapproved measuring system be calibrated by an approved system at a voltage not less than 50% of the rated testing voltage, and the result then be extrapolated linearly. It has been found that this method leads to great error due to the capacitive rise if it is not correctly used during a withstand voltage test under certain testing conditions, especiaUy for a test on high voltage transformers with large capacity. Since the withstand voltage test is the most important means to examine the operation reliability of a transformer, and it can be destructive to the insulation, a precise measurement must be guaranteed. In this paper a factor, named as the capacitive rise factor, is introduced to assess the rise. The voltage measurement error during the calibration is determined by the parameters of the test sample and the testing facilities, as well as the measuring point. Based on theoretical analysis in this paper, a novel method is suggested and demonstrated to estimate the error by using the capacitive rise factor and other known parame- ters of the testing circuit.
基金supported by National Natural Science Foundation of China(No.51375125)the Foundation for Distinguished Young Scholars of Heilongjiang Province,China(No.JC201111)the Program for New Century Excellent Talents in University(No.NCET10-0146)
文摘To analyze the attitude errors of vertical docking test system of small satellite,the static error and kinematic error of test system are considered.The working principle of test system and coordinate of actuator are introduced.The model of friction torque on the joints and torque on docking mechanism are built.Dynamics equation of actuator is built by the Lagrange equation and the Nielsen equation.Under the condition of 24 different angle groups,the calculation of dynamics equation is built by using MATLAB/SIMULINK platform and the kinematic errors of actuator are obtained.The attitude error models of docking mechanism are built.Results shows that the main angle error sources of yaw,row,pitch are not identical.The attitude error of yaw angle can be decreased by compensating the angle error around xaxis.The attitude error of row angle mainly originates in the system error,and it can be eliminated by adjusting non-orthogonal degree.
文摘When a statistical test of hypothesis for a population mean is performed, we are faced with the possibility of committing a Type II error by not rejecting the null hypothesis when in fact the population mean has changed. We consider this issue and quantify matters in a manner that differs a bit from what is commonly done. In particular, we define the probability distribution function for Type II errors. We then explore some interesting properties that we have not seen mentioned elsewhere for this probability distribution function. Finally, we discuss several Maple procedures that can be used to perform various calculations using the distribution.
基金Supported by the National Natural Science Foundation of China(No.11079045,11179003 and 11305233)the Important Direction Project of the CAS Knowledge Innovation Program(No.KJCX2-YWN27)
文摘Single event effects(SEEs) induced by radiations become a significant challenge to the reliability for modern electronic systems. To evaluate SEEs susceptibility for microelectronic devices and integrated circuits(ICs), an SEE testing system with flexibility and robustness was developed at Heavy Ion Research Facility in Lanzhou(HIRFL). The system is compatible with various types of microelectronic devices and ICs, and supports plenty of complex and high-speed test schemes and plans for the irradiated devices under test(DUTs). Thanks to the combination of meticulous circuit design and the hardened logic design, the system has additional performances to avoid an overheated situation and irradiations by stray radiations. The system has been tested and verified by experiments for irradiating devices at HIRFL.
文摘Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regression model axe detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedasticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).
文摘The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techniques. A theoretical analysis of establishing these types of errors was made and compared to determination of False Positive, False Negative, True Positive and True Negative. Experimental laboratory detection methods used to detect Cryptosporidium spp. were used to highlight the relationship between hypothesis testing, sensitivity, specificity and predicted values. The study finds that, sensitivity and specificity for the two laboratory methods used for Cryptosporidium detection were low hence lowering the probability of detecting a “false null hypothesis” for the presence of cryptosporidium in the water samples using either Microscopic or PCR. Nevertheless, both procedures for cryptosporidium detection had higher “true negatives” increasing its probability of failing to reject a “true null hypothesis” with specificity of 1.00 for both Microscopic and PCR laboratory detection methods.
文摘This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.
基金Supported by SSFC(04BTJ002),the National Natural Science Foundation of China(10371016) and the Post-Doctorial Grant in Southeast University.
文摘This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.
基金National Science Council. Chinese Taipei, Under Grant No. NSC-92-2211-E-027-015
文摘It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.
文摘Technical college students often commit different oral errors in their English learning. The type of students'spoken English errors is analyzed in this paper and the common errors are classified into four groups: phonological errors, lexical errors, grammatical errors and pragmatic errors. The result shows that lexical errors and grammatical errors are more common for learners from technical colleges.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)TheMKE,Korea,under the Human Resources Development Programfor Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.
基金supported by the NSC,Chinese Taipei,Under Grant No.NSC-95-2221-E-027-099
文摘Although the step degree of nonlinearity has been introduced to conduct basic analysis and error propagation analysis for the pseudodynamic testing of nonlinear systems, it cannot be reliably used to select an appropriate time step before performing a pseudodynamic test. Therefore, a novel parameter of instantaneous degree of nonlinearity is introduced to monitor the stiffness change at the end of a time step, and can thus be used to evaluate numerical and error propagation properties for nonlinear systems. Based on these properties, it is possible to select an appropriate time step to conduct a pseudodynamic test in advance. This possibility is very important in pseudodynamic testing, since the use of an arbitrary time step might lead to unreliable results or even destroy the test specimen. In this paper, guidelines are proposed for choosing an appropriate time step for accurate integration of nonlinear systems. These guidelines require estimation of the maximum instantaneous degree of nonlinearity and the solution of the initial natural frequency. The Newmark explicit method is chosen for this study. All the analytical results and the guidelines proposed are thoroughly confirmed with numerical examples.
文摘The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It reviews the geodetic determination of a reference point and a base line used for the test measurements. The study describes the completed test measurements, and on the basis of results, it draws the conclusions for the accuracy of the investigated surveying methods. Finally, considering these accuracy measures, their possible application in mine surveying is also mentioned very shortly.