The basement of the Romanian Carpathians is made of Neoproterozoic to early Paleozoic peri- Gondwanan terranes variably involved in the Variscan orogeny, similarly to other basement terrains of Europe. They were hardl...The basement of the Romanian Carpathians is made of Neoproterozoic to early Paleozoic peri- Gondwanan terranes variably involved in the Variscan orogeny, similarly to other basement terrains of Europe. They were hardly dismembered during the Alpine orogeny and traditionally have their own names in the three Carpathian areas. The Danubian domain of the South Carpathians comprises the Dragsan and Lainici-Paiius peri-Amazonian terranes. The Dragsan terrane originated within the ocean surrounding Rodinia and docked with Rodinia at -800 Ma. It does not contain Cadomian magmatism and consequently it is classified as an Avalonian extra-Cadomian terrane, The Lainici-Pfiius terrane is a Ganderian fragment strongly modified by Cadomian subduction-related magmatism, It is attached to the Moesia platform. The TisoviD terrane is an ophiolite that marks the boundary between Drfagsan and Lainici-Paius terranes. The other basement terranes of the Romanian Carpathians originated close to the Ordovician North- African orogen, as a result of the eastern Rheic Ocean opening and closure. Except for the Sebes-Lotru terrane that includes a lower metamorphic unit of Cadomian age, all the other terranes (Bretila, Tulghes, Negrisoara and Rebra in the East Carpathians, Somes, Biharia and Baia de Aries in the Apuseni mountains, Fagaras, Leaota, Carat and Pades in the South Carpathians) represent late Cambrian-Ordovician rock assemblages. Their provenance, is probably within paleo-nortbeast Africa, close to the Arabian-Nubian shield. The late Cambrian-Ordovician terranes are defined here as Carpathian-type terranes. According to their lithostratigraphy and origin, some are of continental margin magmatic arc setting, whereas others formed in rift and back-arc environment and closed to passive continental margin settings. In a paleo- geographic reconstruction, the continental margin magmatic arc terranes were first that drifted out, followed by the passive continental margin terranes with the back-arc terranes in their front. They accreted to Laurussia during the Variscan orogeny. Some of them (Sebes-Lotru in South Carpathians and Baia de Aries in Apuseni mountains) underwent eclogite-grade metamorphism. The Danubian terranes, the Bretila terrane and the Somes terrane were intruded by Variscan granitoids.展开更多
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian li...Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.展开更多
Two terranes formed since the Late Palaeozoic can be distinguished in southwestern China. One is charac-terized by the Permo-Carboniferous ice-rafted marine gravel-bearing clastic formation and the cold-water faunaof ...Two terranes formed since the Late Palaeozoic can be distinguished in southwestern China. One is charac-terized by the Permo-Carboniferous ice-rafted marine gravel-bearing clastic formation and the cold-water faunaof the Gondwana facies, including the Gangmar Co, Lhasa, Sa' gya, Tengchong and Baoshan terranes and theother is marked by the Upper Palaeozoic of the Yangtze type with the Cathaysian flora and the Pacific-typefusulinids, comprising the Changning-Menglian, Shuangjiang-Lancang, Qamdo and Bayan Har terranes. TheLongmu Co-Shuanghu-Dengqen-North Lancang River-Kejie-Mengding suture zone between the two groups ofterranes is the boundary between Gondwana and Pacifica in southwestern China. On the grounds of thesedimentary formation and successive southwestward migration of the Asian nonmarine Jurassic-Cretaceousendemic bivalves, the ages of the suture and some terranes to the southwest of the suture zone are discussed.The Baoshan terrane and the Nyainrong-Sog terrane in the Lhasa composite terrane were firstly pieced togeth-er with the Asian continent in the early Early Jurassic. The northern Tibet-western Yunnan microplate, in-cluding the Gangmar Co, Lhasa and Tengchong terranes, collided with the Asian continent at the end of theEarly Cretaceous Neocomian.展开更多
The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in ...The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in this archipelagic area, generating metallogenic belts in multi-terranes. Since the Late Paleozoic, opening and closure of the Paleotethys and Neotethys led to multiple suture zones between different blocks, mainly between the Indochina terrane, the Nambung terrane, the Sibumasu terrane and the West Myanmar terrane. During the Mesozoic to Cenozoic, the formation of accreted terranes and their related islands was caused by subduction and collision processes between the Pacific and Australian plates toward the Eurasian Continent, forming Sundaland and its affiliated islands, the Philippines and its subsidiary islands, the Papua New Guinea terrane and its related islands and the Sunda epicontinental arc system. Within the margin of terranes resulted in the structural transfer zones, their secondary tectonic units can be divided into island arc belts, back-arc basins, suture zones, marginal fold belts and orogenic belts. The metallogenic assemblages are mainly distributed within these structural zones of the terranes. According to the relationship between these tectonic units and the distribution of mineral resources, the tectonic-metallogenic belts can be divided into 24 metallogenic belts in Southeast Asia. They are characterized by a diversity and frequency of metallogenic material combination which is likely to reflect the complexity of the material distribution during mineralization processes, mostly by the structural transformation during the dissociation-convergence process between multiple terranes. Therefore, the formation of ore deposits was not only restricted by the evolution(opening and closure) of Paleo-and Neotethys, but may also be controlled by the interaction of the terranes with different tectonic attributes which provided multiple sources of metallogenic material.展开更多
Abstract: Through a study of the geotransect from Golmud to Ejin Qi published recently, the tectonics of the crust beneath the area from the northern Qinghai-Tibet plateau (Qaidam and the Qilian Mountains) to the bord...Abstract: Through a study of the geotransect from Golmud to Ejin Qi published recently, the tectonics of the crust beneath the area from the northern Qinghai-Tibet plateau (Qaidam and the Qilian Mountains) to the border between China and Mongolia and its structure, composition and tectonic evolution have been revealed, and abundant information about the deep structures has been provided. Based on the research into the geotransect, it is suggested that the crust in this area was formed by the assembly of the terranes in different geological stages. Following the formation of the Palaeo-Asian continent, the north part of the corridor of the transect became a part of the huge unifying continent by the end of the Early Permian. In the Mesozoic and Cenozoic, as a result of the compression mainly by the push of the Qinghai-Tibet plateau on the south, the unique crustal structure and geomorphologic features on the northern Qinghai-Tibet plateau were formed. This geotransect together with the Yadong-Golmud geotransect constitutes a long geotransect which runs across the western Chinese continent.展开更多
It is one of hot issues in Tibetan research that is to study the mode,process and kinetics of the crustal shortening during Mesozoic-Cenozoic.In this paper, on the basis of systematic collection,analysis and research ...It is one of hot issues in Tibetan research that is to study the mode,process and kinetics of the crustal shortening during Mesozoic-Cenozoic.In this paper, on the basis of systematic collection,analysis and research of the existing data and results from Himalayas,Lhasa and Qiangtang terranes,we conducted the balanced cross-section study.In the north Qiangtang,the line-balanced cross-section展开更多
The extensive tracing of Nd, Sr and Pb isotopes has revealed that there exist high-degree heterogeneities in suboceanic mantle and mantle anomalies of the Southern Hemisphere on a large scale (DUPAL, high <sup>8...The extensive tracing of Nd, Sr and Pb isotopes has revealed that there exist high-degree heterogeneities in suboceanic mantle and mantle anomalies of the Southern Hemisphere on a large scale (DUPAL, high <sup>87</sup>Sr/<sup>86</sup>Sr, and HIMU, high μ value, i. e. <sup>238</sup> U/<sup>204</sup>pb). Recently, the isotopic tracing of the Cenozoic Volcanics from the continent of China has confirmed that there exists a general tendency that the subcontinental mantle of eastern China was en-展开更多
The Raohe area of Heilongjiang Province,Northeast China belongs to the Nadanhada Terrane,which was in low latitudes of Panthalassa during the Triassic.The composition of the Late Triassic conodont fauna,derived from l...The Raohe area of Heilongjiang Province,Northeast China belongs to the Nadanhada Terrane,which was in low latitudes of Panthalassa during the Triassic.The composition of the Late Triassic conodont fauna,derived from limestone lenses interpreted to formed on seamounts,provides important new information on the pelagic biota in this ocean.New conodont samples collected from sections at Minzhu,Minnan and Chigangbei sections belong to three Norian conodont zones.In ascending order,they are:Mockina postera Zone,Mockina bidentata Zone and Parvigondolella andrusovi Zone.The Norian conodont fauna in the Raohe area has distinct attributes:there are a lot of cosmopolitan species(e.g.,Mockina postera,Mockina bidentata,Parvigondolella andrusovi)which enable good global correlation;endemic conodont species are also present(e.g.,Mockina sakurae,Mockina shamiseni,Norigondolella nadanhadaensis)indicating that Panthalassa Ocean conodont populations also contained unique taxa;and some conodonts belong to taxa with much shorter ranges in surrounding epeiric seas(e.g.,Carnepigondolella pseudoechinata,Neocavitella cavitata and Epigondolella vialovi).The presence of the latter“relicts”indicates that the seamounts were persistently suitable habitats for many millions of years in the Late Triassic.展开更多
Many Late Cretaceous-Early Paleocene high-silica igneous rocks,associated with Pb-Zn-Ag deposits,were identified in western part of southern Lhasa terrane.The Dajiacuodong muscovite granite as one of the high-silica g...Many Late Cretaceous-Early Paleocene high-silica igneous rocks,associated with Pb-Zn-Ag deposits,were identified in western part of southern Lhasa terrane.The Dajiacuodong muscovite granite as one of the high-silica granites was dated by zircon U-Pb method and determined for whole-rock major and trace elements and zircon trace elements.Combined with previous data of other high-silica igneous rocks,petrogenesis,tectonic setting,and factors controlling Pb-Zn-Ag mineralization were studied.The muscovite granite emplaced at 68.2±0.3 Ma and is peraluminous.All high-silica igneous rocks are S-type and whole-rock CaO,Na_(2)O,and Rb-Sr-Ba and zircon Hf isotopic compositions show that they were formed by partial melting of meta-sedimentary protoliths from the Lhasa terrane basement.Roll-back of the NeoTethys oceanic slab caused melting of the mantle wedge is the trigger for partial melting of basement.Zircon trace elements indicate that the high-silica igneous rocks are reduced and H_(2)O-and F-enriched.These geochemical features and magma sources of the high-silica igneous rocks are comparable with the W-Sn deposit related granites.Shallow emplacement of high-silica granites and coeval volcanic eruption induced rapid escape of fluids.This caused inefficiency of hydrothermal-magmatic interaction,which are reasons to form Pb-Zn-Ag rather than W-Sn deposits.展开更多
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicat...Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.展开更多
The paper reviews previous and recently obtained geological,stratigraphic and geochronological data on the Russian-Kazakh Altai orogen,which is located in the western Central Asian Orogenic Belt(CAOB),between the Kaza...The paper reviews previous and recently obtained geological,stratigraphic and geochronological data on the Russian-Kazakh Altai orogen,which is located in the western Central Asian Orogenic Belt(CAOB),between the Kazakhstan and Siberian continental blocks.The Russian-Kazakh Altai is a typical Pacific-type orogen,which represents a collage of oceanic,accretionary,fore-arc,island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts.Evidence for this comes from key indicative rock associations,such as boninite-and turbidite(graywacke)-bearing volcanogenic-sedimentary units,accreted pelagic chert,oceanic islands and plateaus,MORB-OIB-protolith blueschists.The three major tectonic domains of the Russian-Kazakh Altai are:(1)Altai-Mongolian terrane(AMT);(2)subduction-accretionary(Rudny Altai,Gorny Altai)and collisional(Kalba-Narym)terranes;(3)Kurai,Charysh-Terekta,North-East,Irtysh and Char suture-shear zones(SSZ).The evolution of this orogen proceeded in five major stages:(i)late Neoproterozoic-early Paleozoic subduction-accretion in the Paleo-Asian Ocean;(ii)Ordovician-Silurian passive margin;(iii)Devonian-Carboniferous active margin and collision of AMT with the Siberian conti-nent;(iv)late Paleozoic closure of the PAO and coeval collisional magmatism;(v)Mesozoic post-collisional deformation and anarogenic magmatism,which created the modern structural collage of the Russian-Kazakh Altai orogen.The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane(continental versus active margin),age of Altai basement,proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.展开更多
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main ...We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate’s convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.展开更多
Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilia...Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilian terrane consists mainly of meta-argillo-arenaceous rocks and granites and its bulk part was formed in the period of 0.8–1.0 Ga (the Jinningian period); (2) most of the meta-argillo-arenaceous rocks and granitic rocks have strong negative Eu and Ba anomalies (Eu/Eu*= 0.47–0.71 and Ba/Ba*=0.16–0.64), with fDM and ENd (1.0 Ga) ranging from 1.87 to 2.26 Ga and from ?8.54 to ?4.06 respectively, showing relatively high maturity; and (3) the Jinningian granitic rocks are a typical product of continent-continent collision, being probably related to the formation of the supercontinent Rodinia. These studies, combined with the study of high-grade basement rocks near the Qilian terrane, suggest that before the Jinningian period, the Qilian-Qaidam northern-margin terrane and Dunhuang-Alxa terrane were separated from each other, belonging to different plate systems of the North China craton and Yangtze platform respectively. The Qilian orogenic belt was the same as or similar to the Qiling orogenic belt in terms of the geological evolution history at least before the Jinningian period.展开更多
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong'er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently d...The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong'er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E), polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90‰, and δ 18 O=9‰ at 373°C, and are deeply sourced; the L-stage fluids, with δD=-70‰, and δ 18 O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, and δ 18 O=2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the E- stage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong'er Group, show that these units cannot generate fluids with the measured isotopic composition (highδ 18 O and δ 13 C ratios and lowδD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong'er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong'er terrane along the Machaoying fault. Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.展开更多
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significant...The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.展开更多
The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedg...The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedges,high-pressure metamorphosed detachment zones and remnants of ophiolites. It resulted from the northeastward subduction of the Early Palaeozoic Qilan oceanic crust beneath the Alxa block. High-pressure metamorphism, which occurred during the subduction, progressed through three stages: the initial stage of medium T-high P,the main stage of temperature decrease and pressure increase, and the lag stage of pressure decrease and temperature increase. Finally the paper presents a retrotrench subduction dynamic model indicative of northward subduction of the central Qilian block and southward accretion of the Alxa block during the period of 450-500 Ma.展开更多
Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Pen...Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.展开更多
The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly...The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves(MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with ~B(Ca+Na)〉1.5, and Si=6.81-7.42 apfu for the host rocks and Si=6.77-7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high Mg O(13.19 wt.%-13.03 wt.%) contents, but define a narrow range of Al apfu(atoms per formula unit) variations(2.44-2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al.(2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations(Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton.展开更多
: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclog...: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclogites are obviously correlated with the types of their surrounding rocks. The helium isotope composition of the eclogites from the Bixiling complex possesses characters of mantle-derived rocks with the 3He/4He ratio being 5.6 Ra. The 4He concentration of the eclogites exhibits visible inverse correlation with the δ18O value of the quartz in the eclogites from the Sulu area. The δ18O values of the eclogites change synchronously with those of the country rocks. Those results suggest that protoliths of the eclogites were basic-ultrabasic rock bodies or veins intruding into the continental crust in the early stage; strong exchange and hybridization between the basic-ultrabasic rocks and continental rocks and the atmospheric water during the intrusion led to abrupt increase of the 3He/4He ratios, δ18O values and Nd(0) values of the intrusive bodies or veins, which show characters of continental rocks. This indicates that the eclogites are autochthonous.展开更多
The plate affiliation of the North Dabie terrane (NDT) has been controversial. To address this fundamental question, an integrated study of internal structure, in-situ U-Pb dating and trace element analysis in zirco...The plate affiliation of the North Dabie terrane (NDT) has been controversial. To address this fundamental question, an integrated study of internal structure, in-situ U-Pb dating and trace element analysis in zircons and field investigation for migmatite in the NDT was carried out, which reveals par- ticipation of crustal rocks of the North China Craton (NCC) in the protolith in addition to the more common crustal rocks of the Yangtze Craton (YC). The evidence of an NCC affinity for protolith of migmatite in the NDT is the -2.5 Ga (2 486±14 and 2 406±26 Ma) magamtic age and -1.8 Ga (1 717±79 Ma) metamorphic age in the relict zircon domains because these two age groups are characteristic for the evolution of the NCC. The evidence of a YC affinity for protolith of migmatite in the NDT is the more common 0.7-0.8 Ga (e.g., 787±12 Ma) magamtic zircon age. Mid-Neoproterozoic magmatic age (0.7-0.8 Ga) is a symbol of YC basement rocks. In view of the widely exposed YC crustal components in the NDT, we suggest that the protolith of the NDT is mainly crustal rocks from the YC with minor crustal components from the NCC. The zircon rim domains and new growth grains from all the migmatite sam- ples are characterized by anatectic zircons and have a widely concordant ages ranging from 112.2±2.8 to 159.6±4.3 Ma with several peak values, suggesting a long lasting multistage anatexis. In conclusion, the NDT has a mixed protolith origin of both the YC and the NCC crustal rocks were strongly remoulded by anatexis during orogenic collapse.展开更多
基金grant IDEI-PN-II-ID-PCE-2011-30100 from the Romanian National Science Foundation(ANCS-CNCS)
文摘The basement of the Romanian Carpathians is made of Neoproterozoic to early Paleozoic peri- Gondwanan terranes variably involved in the Variscan orogeny, similarly to other basement terrains of Europe. They were hardly dismembered during the Alpine orogeny and traditionally have their own names in the three Carpathian areas. The Danubian domain of the South Carpathians comprises the Dragsan and Lainici-Paiius peri-Amazonian terranes. The Dragsan terrane originated within the ocean surrounding Rodinia and docked with Rodinia at -800 Ma. It does not contain Cadomian magmatism and consequently it is classified as an Avalonian extra-Cadomian terrane, The Lainici-Pfiius terrane is a Ganderian fragment strongly modified by Cadomian subduction-related magmatism, It is attached to the Moesia platform. The TisoviD terrane is an ophiolite that marks the boundary between Drfagsan and Lainici-Paius terranes. The other basement terranes of the Romanian Carpathians originated close to the Ordovician North- African orogen, as a result of the eastern Rheic Ocean opening and closure. Except for the Sebes-Lotru terrane that includes a lower metamorphic unit of Cadomian age, all the other terranes (Bretila, Tulghes, Negrisoara and Rebra in the East Carpathians, Somes, Biharia and Baia de Aries in the Apuseni mountains, Fagaras, Leaota, Carat and Pades in the South Carpathians) represent late Cambrian-Ordovician rock assemblages. Their provenance, is probably within paleo-nortbeast Africa, close to the Arabian-Nubian shield. The late Cambrian-Ordovician terranes are defined here as Carpathian-type terranes. According to their lithostratigraphy and origin, some are of continental margin magmatic arc setting, whereas others formed in rift and back-arc environment and closed to passive continental margin settings. In a paleo- geographic reconstruction, the continental margin magmatic arc terranes were first that drifted out, followed by the passive continental margin terranes with the back-arc terranes in their front. They accreted to Laurussia during the Variscan orogeny. Some of them (Sebes-Lotru in South Carpathians and Baia de Aries in Apuseni mountains) underwent eclogite-grade metamorphism. The Danubian terranes, the Bretila terrane and the Somes terrane were intruded by Variscan granitoids.
基金financially supported by the National Natural Science Foundation of China(Grant No.42074090)
文摘Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.
文摘Two terranes formed since the Late Palaeozoic can be distinguished in southwestern China. One is charac-terized by the Permo-Carboniferous ice-rafted marine gravel-bearing clastic formation and the cold-water faunaof the Gondwana facies, including the Gangmar Co, Lhasa, Sa' gya, Tengchong and Baoshan terranes and theother is marked by the Upper Palaeozoic of the Yangtze type with the Cathaysian flora and the Pacific-typefusulinids, comprising the Changning-Menglian, Shuangjiang-Lancang, Qamdo and Bayan Har terranes. TheLongmu Co-Shuanghu-Dengqen-North Lancang River-Kejie-Mengding suture zone between the two groups ofterranes is the boundary between Gondwana and Pacifica in southwestern China. On the grounds of thesedimentary formation and successive southwestward migration of the Asian nonmarine Jurassic-Cretaceousendemic bivalves, the ages of the suture and some terranes to the southwest of the suture zone are discussed.The Baoshan terrane and the Nyainrong-Sog terrane in the Lhasa composite terrane were firstly pieced togeth-er with the Asian continent in the early Early Jurassic. The northern Tibet-western Yunnan microplate, in-cluding the Gangmar Co, Lhasa and Tengchong terranes, collided with the Asian continent at the end of theEarly Cretaceous Neocomian.
基金financially supported by the Natural Science Foundation of China (Nos. 41573039 41673040 U1603245)
文摘The paper presents an overview of the relationships between the interior structures of tectonic terranes and the distribution of tectonic-metallogenic zones in Southeast Asia. Episodic tectonic activities occurred in this archipelagic area, generating metallogenic belts in multi-terranes. Since the Late Paleozoic, opening and closure of the Paleotethys and Neotethys led to multiple suture zones between different blocks, mainly between the Indochina terrane, the Nambung terrane, the Sibumasu terrane and the West Myanmar terrane. During the Mesozoic to Cenozoic, the formation of accreted terranes and their related islands was caused by subduction and collision processes between the Pacific and Australian plates toward the Eurasian Continent, forming Sundaland and its affiliated islands, the Philippines and its subsidiary islands, the Papua New Guinea terrane and its related islands and the Sunda epicontinental arc system. Within the margin of terranes resulted in the structural transfer zones, their secondary tectonic units can be divided into island arc belts, back-arc basins, suture zones, marginal fold belts and orogenic belts. The metallogenic assemblages are mainly distributed within these structural zones of the terranes. According to the relationship between these tectonic units and the distribution of mineral resources, the tectonic-metallogenic belts can be divided into 24 metallogenic belts in Southeast Asia. They are characterized by a diversity and frequency of metallogenic material combination which is likely to reflect the complexity of the material distribution during mineralization processes, mostly by the structural transformation during the dissociation-convergence process between multiple terranes. Therefore, the formation of ore deposits was not only restricted by the evolution(opening and closure) of Paleo-and Neotethys, but may also be controlled by the interaction of the terranes with different tectonic attributes which provided multiple sources of metallogenic material.
基金This paper is one of the results of the project"The Golmud-Ejin Geoscience Transect Interdisciplinary Research".The project was supported by the former Ministry of Geology and Mineral Resources(MGMR)and the National Natural Science Foundation of China(NNSFC).The leaders of the Project are Profs.Wang Zeju,Wu Gongjian and Xiao Xuchang.
文摘Abstract: Through a study of the geotransect from Golmud to Ejin Qi published recently, the tectonics of the crust beneath the area from the northern Qinghai-Tibet plateau (Qaidam and the Qilian Mountains) to the border between China and Mongolia and its structure, composition and tectonic evolution have been revealed, and abundant information about the deep structures has been provided. Based on the research into the geotransect, it is suggested that the crust in this area was formed by the assembly of the terranes in different geological stages. Following the formation of the Palaeo-Asian continent, the north part of the corridor of the transect became a part of the huge unifying continent by the end of the Early Permian. In the Mesozoic and Cenozoic, as a result of the compression mainly by the push of the Qinghai-Tibet plateau on the south, the unique crustal structure and geomorphologic features on the northern Qinghai-Tibet plateau were formed. This geotransect together with the Yadong-Golmud geotransect constitutes a long geotransect which runs across the western Chinese continent.
文摘It is one of hot issues in Tibetan research that is to study the mode,process and kinetics of the crustal shortening during Mesozoic-Cenozoic.In this paper, on the basis of systematic collection,analysis and research of the existing data and results from Himalayas,Lhasa and Qiangtang terranes,we conducted the balanced cross-section study.In the north Qiangtang,the line-balanced cross-section
基金Project supported by the National Natural Science Foundation of China.
文摘The extensive tracing of Nd, Sr and Pb isotopes has revealed that there exist high-degree heterogeneities in suboceanic mantle and mantle anomalies of the Southern Hemisphere on a large scale (DUPAL, high <sup>87</sup>Sr/<sup>86</sup>Sr, and HIMU, high μ value, i. e. <sup>238</sup> U/<sup>204</sup>pb). Recently, the isotopic tracing of the Cenozoic Volcanics from the continent of China has confirmed that there exists a general tendency that the subcontinental mantle of eastern China was en-
基金supported by the National Natural Sciences Foundation of China(Nos.42372005,41830320,41972033)。
文摘The Raohe area of Heilongjiang Province,Northeast China belongs to the Nadanhada Terrane,which was in low latitudes of Panthalassa during the Triassic.The composition of the Late Triassic conodont fauna,derived from limestone lenses interpreted to formed on seamounts,provides important new information on the pelagic biota in this ocean.New conodont samples collected from sections at Minzhu,Minnan and Chigangbei sections belong to three Norian conodont zones.In ascending order,they are:Mockina postera Zone,Mockina bidentata Zone and Parvigondolella andrusovi Zone.The Norian conodont fauna in the Raohe area has distinct attributes:there are a lot of cosmopolitan species(e.g.,Mockina postera,Mockina bidentata,Parvigondolella andrusovi)which enable good global correlation;endemic conodont species are also present(e.g.,Mockina sakurae,Mockina shamiseni,Norigondolella nadanhadaensis)indicating that Panthalassa Ocean conodont populations also contained unique taxa;and some conodonts belong to taxa with much shorter ranges in surrounding epeiric seas(e.g.,Carnepigondolella pseudoechinata,Neocavitella cavitata and Epigondolella vialovi).The presence of the latter“relicts”indicates that the seamounts were persistently suitable habitats for many millions of years in the Late Triassic.
基金funded by the National Key R&D Program of China(2021YFC2900100)the Basic Research Found of Chinese Academy of Geological Sciences(KK2306)the Geological Survey Program of China Geological Survey(DD20230360 and DD20240078)。
文摘Many Late Cretaceous-Early Paleocene high-silica igneous rocks,associated with Pb-Zn-Ag deposits,were identified in western part of southern Lhasa terrane.The Dajiacuodong muscovite granite as one of the high-silica granites was dated by zircon U-Pb method and determined for whole-rock major and trace elements and zircon trace elements.Combined with previous data of other high-silica igneous rocks,petrogenesis,tectonic setting,and factors controlling Pb-Zn-Ag mineralization were studied.The muscovite granite emplaced at 68.2±0.3 Ma and is peraluminous.All high-silica igneous rocks are S-type and whole-rock CaO,Na_(2)O,and Rb-Sr-Ba and zircon Hf isotopic compositions show that they were formed by partial melting of meta-sedimentary protoliths from the Lhasa terrane basement.Roll-back of the NeoTethys oceanic slab caused melting of the mantle wedge is the trigger for partial melting of basement.Zircon trace elements indicate that the high-silica igneous rocks are reduced and H_(2)O-and F-enriched.These geochemical features and magma sources of the high-silica igneous rocks are comparable with the W-Sn deposit related granites.Shallow emplacement of high-silica granites and coeval volcanic eruption induced rapid escape of fluids.This caused inefficiency of hydrothermal-magmatic interaction,which are reasons to form Pb-Zn-Ag rather than W-Sn deposits.
基金China Geological Survey(Grant No.20013000166) Natural Science Foundation of China(Grant No.49902006).
文摘Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.
基金the Scientific Project of the Institute of Geology and Mineralogy SB RASIGCP#592 Project"Continental construction in Central Asia"under the patronage of UNESCO-IUGS
文摘The paper reviews previous and recently obtained geological,stratigraphic and geochronological data on the Russian-Kazakh Altai orogen,which is located in the western Central Asian Orogenic Belt(CAOB),between the Kazakhstan and Siberian continental blocks.The Russian-Kazakh Altai is a typical Pacific-type orogen,which represents a collage of oceanic,accretionary,fore-arc,island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts.Evidence for this comes from key indicative rock associations,such as boninite-and turbidite(graywacke)-bearing volcanogenic-sedimentary units,accreted pelagic chert,oceanic islands and plateaus,MORB-OIB-protolith blueschists.The three major tectonic domains of the Russian-Kazakh Altai are:(1)Altai-Mongolian terrane(AMT);(2)subduction-accretionary(Rudny Altai,Gorny Altai)and collisional(Kalba-Narym)terranes;(3)Kurai,Charysh-Terekta,North-East,Irtysh and Char suture-shear zones(SSZ).The evolution of this orogen proceeded in five major stages:(i)late Neoproterozoic-early Paleozoic subduction-accretion in the Paleo-Asian Ocean;(ii)Ordovician-Silurian passive margin;(iii)Devonian-Carboniferous active margin and collision of AMT with the Siberian conti-nent;(iv)late Paleozoic closure of the PAO and coeval collisional magmatism;(v)Mesozoic post-collisional deformation and anarogenic magmatism,which created the modern structural collage of the Russian-Kazakh Altai orogen.The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane(continental versus active margin),age of Altai basement,proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.
文摘We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate’s convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.
基金supported by China National Natural Science Foundation Grant 49732070.
文摘Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilian terrane consists mainly of meta-argillo-arenaceous rocks and granites and its bulk part was formed in the period of 0.8–1.0 Ga (the Jinningian period); (2) most of the meta-argillo-arenaceous rocks and granitic rocks have strong negative Eu and Ba anomalies (Eu/Eu*= 0.47–0.71 and Ba/Ba*=0.16–0.64), with fDM and ENd (1.0 Ga) ranging from 1.87 to 2.26 Ga and from ?8.54 to ?4.06 respectively, showing relatively high maturity; and (3) the Jinningian granitic rocks are a typical product of continent-continent collision, being probably related to the formation of the supercontinent Rodinia. These studies, combined with the study of high-grade basement rocks near the Qilian terrane, suggest that before the Jinningian period, the Qilian-Qaidam northern-margin terrane and Dunhuang-Alxa terrane were separated from each other, belonging to different plate systems of the North China craton and Yangtze platform respectively. The Qilian orogenic belt was the same as or similar to the Qiling orogenic belt in terms of the geological evolution history at least before the Jinningian period.
基金the Ministry ofScience and Technology of China(Grant No.95-Pre-39-04)National Natural Science Foundation of China(Grant Nos.40425006,49972035,40352003)+1 种基金the Hundred YoungScientists Program of the Chinese Academy of Sciences(CAS) the Trans-Century Teacher Program of theEducation Ministry of China.
文摘The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong'er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E), polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90‰, and δ 18 O=9‰ at 373°C, and are deeply sourced; the L-stage fluids, with δD=-70‰, and δ 18 O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, and δ 18 O=2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the E- stage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong'er Group, show that these units cannot generate fluids with the measured isotopic composition (highδ 18 O and δ 13 C ratios and lowδD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong'er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong'er terrane along the Machaoying fault. Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.
基金supports from the National Natural Science Foundation of China(grants 40172071 and 40211120151 to Yan Quanren)the Ministry of Science and Technology of the People’s Republic of China(grant 2202CB412608 to Wang Zongqi)+2 种基金the China Geological Survey(grant DKD2001002 to Wang Zongqi)the University of Nevada Las Vegas(to Hanson)and the Geological Society of America(to Druschke)are gratefully appreciated.
文摘The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.
基金This research is a project (No. 4870127)supported by the National Natural Science Foundation of China
文摘The front of the Zoulang Nanshan Caledonian volcanic island arc zone in the northern Qilian Mountains is a forearc accretionary terrane, composed of multiple accretionary volcanic island arcs, flysch accretionary wedges,high-pressure metamorphosed detachment zones and remnants of ophiolites. It resulted from the northeastward subduction of the Early Palaeozoic Qilan oceanic crust beneath the Alxa block. High-pressure metamorphism, which occurred during the subduction, progressed through three stages: the initial stage of medium T-high P,the main stage of temperature decrease and pressure increase, and the lag stage of pressure decrease and temperature increase. Finally the paper presents a retrotrench subduction dynamic model indicative of northward subduction of the central Qilian block and southward accretion of the Alxa block during the period of 450-500 Ma.
基金supported by the National Natural Science Foundation of China (No. 41272072)the NSFC/NRF Research Cooperation Programm (No. 41761144061)the SDUST Research Fund (No. 2015TDJH101)
文摘Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.
基金funded by the National Natural Science Foundation of China (Nos. 41403028, 40830317)the China Postdoctoral Science Foundation (No. 2015T80113)+1 种基金China University of Geosciences (No. GMPR201509)the Fundamental Research Funds for the Central Universities of China (No. 2652015018)
文摘The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves(MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with ~B(Ca+Na)〉1.5, and Si=6.81-7.42 apfu for the host rocks and Si=6.77-7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high Mg O(13.19 wt.%-13.03 wt.%) contents, but define a narrow range of Al apfu(atoms per formula unit) variations(2.44-2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al.(2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations(Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton.
文摘: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclogites are obviously correlated with the types of their surrounding rocks. The helium isotope composition of the eclogites from the Bixiling complex possesses characters of mantle-derived rocks with the 3He/4He ratio being 5.6 Ra. The 4He concentration of the eclogites exhibits visible inverse correlation with the δ18O value of the quartz in the eclogites from the Sulu area. The δ18O values of the eclogites change synchronously with those of the country rocks. Those results suggest that protoliths of the eclogites were basic-ultrabasic rock bodies or veins intruding into the continental crust in the early stage; strong exchange and hybridization between the basic-ultrabasic rocks and continental rocks and the atmospheric water during the intrusion led to abrupt increase of the 3He/4He ratios, δ18O values and Nd(0) values of the intrusive bodies or veins, which show characters of continental rocks. This indicates that the eclogites are autochthonous.
基金supported by the National Basic Research Program of China (No. 2015CB856101)the National Natural Science Foundation of China (Nos. 41372076 and 41572039)the Natural Science Foundation of Hubei Province (No. 2015CFB190)
文摘The plate affiliation of the North Dabie terrane (NDT) has been controversial. To address this fundamental question, an integrated study of internal structure, in-situ U-Pb dating and trace element analysis in zircons and field investigation for migmatite in the NDT was carried out, which reveals par- ticipation of crustal rocks of the North China Craton (NCC) in the protolith in addition to the more common crustal rocks of the Yangtze Craton (YC). The evidence of an NCC affinity for protolith of migmatite in the NDT is the -2.5 Ga (2 486±14 and 2 406±26 Ma) magamtic age and -1.8 Ga (1 717±79 Ma) metamorphic age in the relict zircon domains because these two age groups are characteristic for the evolution of the NCC. The evidence of a YC affinity for protolith of migmatite in the NDT is the more common 0.7-0.8 Ga (e.g., 787±12 Ma) magamtic zircon age. Mid-Neoproterozoic magmatic age (0.7-0.8 Ga) is a symbol of YC basement rocks. In view of the widely exposed YC crustal components in the NDT, we suggest that the protolith of the NDT is mainly crustal rocks from the YC with minor crustal components from the NCC. The zircon rim domains and new growth grains from all the migmatite sam- ples are characterized by anatectic zircons and have a widely concordant ages ranging from 112.2±2.8 to 159.6±4.3 Ma with several peak values, suggesting a long lasting multistage anatexis. In conclusion, the NDT has a mixed protolith origin of both the YC and the NCC crustal rocks were strongly remoulded by anatexis during orogenic collapse.