期刊文献+
共找到732篇文章
< 1 2 37 >
每页显示 20 50 100
Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP
1
作者 Yan Liu Tian Cui Da Li 《Matter and Radiation at Extremes》 2025年第2期90-98,共9页
The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and sup... The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors. 展开更多
关键词 ternary superlithide Li CP model system satellite interstitial electrons non nuclear attractors Fermi surface nesting high pressure superconductivity ternary li c p SUPERCONDUCTIVITY
在线阅读 下载PDF
Irreversibility analysis and multiple cubic regression based efficiency evaluation of ternary nanofluids(TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O)via converging/diverging channels 被引量:1
2
作者 Siddhant Taneja Sapna Sharma Bhuvaneshvar Kumar 《Acta Mechanica Sinica》 2025年第6期63-75,共13页
This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d... This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid. 展开更多
关键词 Converging/Diverging channels ternary nanofluids Multiple cubic regression Entropy generation
原文传递
Preparation and Performance of Ternary Early Strength Agent and Quercetin Composite Cement Sealing Material
3
作者 LIU Jian CHEN Meiting +2 位作者 JI Xiaoli XU Chao WANG Chunmei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期130-140,共11页
A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength... A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength.The optimum ratio of the three early-strengthening agents was determined as 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate by response surface methodology.The effects of the ternary early-strengthening agent composed of calcium formate+triethanolamine(TEA)+lithium sulfate on cementitious pore sealing materials under the synergistic effect of quercetin were studied by means of the performance tests of compressive strength,fluidity,and setting time,and the microstructural characterizations of X-ray powder diffractometer(XRD),thermogravimetry(TG-DSC)and scanning electron microscopy(SEM).The study shows that the synergistic effect of ternary early-strengthening agent and quercetin forms a multi-performance composite admixture for cementitious materials.The best performance was obtained with the compounding scheme of 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate ternary early-strengthening agent and 0.05%quercetin.The compressive strength of 1,3,7,and 28 d are 94.8%,39.8%,42%,and 28%higher than those of the blank group,respectively.The initial time and final setting time are 41 and 57 minutes,respectively.According to the microscopic analysis,the network and fibrous C-S-H gels generated by ternary early-strengthening agents are attached to the surface promoted by quercetin,which forms skeleton support while thickening and solidifying the cement slurry,which enhances the early compressive strength of the cement-based materials. 展开更多
关键词 sealing material ternary early-strengthening agent QUERCETIN synergetic effect response surface methodology
原文传递
Modeling of microstructure and microsegregation evolution in solidification of ternary alloys
4
作者 Qiannan Yu Mengdan Hu +1 位作者 Jinyi Wu Dongke Sun 《Chinese Physics B》 2025年第5期505-515,共11页
The microstructure formed during solidification has a significant impact on the mechanical properties of materials.In this study,a two-dimensional(2D)cellular automaton(CA)-finite difference(FD)-CALPHAD model was deve... The microstructure formed during solidification has a significant impact on the mechanical properties of materials.In this study,a two-dimensional(2D)cellular automaton(CA)-finite difference(FD)-CALPHAD model was developed to simulate the formation of microstructure and solute segregation in the solidification processes of ternary alloys.In the model,dendritic growth is simulated using the CA technique,while solute diffusion is solved by the FD method,and the CALPHAD method is employed to calculate thermodynamic phase equilibrium during solidification.The CA-FD-CALPHAD coupled model is capable of reproducing the evolution of continuous nucleation and growth of grains as well as the evolution of the microstructure and solute distribution during solidification of ternary alloys.In this study,Al–Zn–Mg ternary alloy is taken as an example to simulate the growth of equiaxed and columnar grains and the columnar-to-equiaxed transition(CET)under different solidification conditions.The simulation results are compared with experimental data from the literature,showing a good agreement.Besides,the study also investigates the evolution of temperature and multicomponent solute fields during solidification and the effects of alloy composition and cooling rate on the microstructure morphology.The results reveal that the initial alloy composition and cooling rate significantly affect dendritic morphology and solute segregation.Higher initial alloy concentrations promote the growth of side branches in equiaxed grains,leading to more pronounced solute segregation between dendrites.As the cooling rate increases,the average grain size of the equiaxed grains decreases accordingly.Additionally,a higher cooling rate accelerates the columnar-to-equiaxed transition,leading to a finer grain structure. 展开更多
关键词 ternary alloys SOLIDIFICATION DENDRITE columnar-to-equiaxed transition cellular automaton
原文传递
Robust Superconducting Stability of Ternary Hydride Im3m(Y, Ca)H_(6) upon Decompression
5
作者 Kexin Zhang Jianning Guo +3 位作者 Yulong Wang Xinyue Wu Xiaoli Huang Tian Cui 《Chinese Physics Letters》 2025年第11期244-252,共9页
Ternary hydrides, with their superior chemical and structural flexibility over binary systems, open up new avenues for advancing high-performance superconductor research. The Y-Ca-H system is a promising candidate for... Ternary hydrides, with their superior chemical and structural flexibility over binary systems, open up new avenues for advancing high-performance superconductor research. The Y-Ca-H system is a promising candidate for high-temperature superconductors, as both Im3m YH_(6) and Im3m CaH_(6) exhibit similar structures and excellent superconducting properties, while Y and Ca atoms possess close atomic radii and electronegativities.Here, we report the successful synthesis of Im3m(Y, Ca)H_(6) achieving a maximum superconducting transition temperature(T_(c)) approximately 224 K at 155 GPa through five independent high-temperature and high-pressure experiments. Remarkably, the T_(c) of Im3m(Y, Ca)H_(6) remains highly stable(ΔT_(c) ≤ 1 K) during decompression between 148 and 165 GPa, significantly outperforming binary Im3m CaH_(6) and Im3m YH_(6). The enhanced superconducting properties may stem from the cooperative chemical template effect of Y and Ca atoms near the s-d border, which significantly reinforces H lattice stability and thus maintains superior superconductivity.This study highlights the potential of multicomponent cooperative effects in designing hydride superconductors,offering new insights for achieving high-T_(c) hydrides at lower pressures in the future. 展开更多
关键词 binary systems high temperature superconductors superconducting transition temperature ternary hydrides superconducting properties DECOMPRESSION Y Ca H system superconducting stability
原文传递
Prediction of High Critical Temperature Superconductors in Ternary Y-Hf-H System under High Pressure
6
作者 Chao Deng Min Wang +5 位作者 Siqi Guo Hongyu Huang Mingyang Du Defang Duan Hao Song Tian Cui 《Chinese Physics Letters》 2025年第7期368-387,共20页
Achieving room-temperature superconductivity has been an enduring scientific quest,while hydrogen-rich compounds have emerged as highly promising candidates.Here,we systematically investigated the thermodynamic stabil... Achieving room-temperature superconductivity has been an enduring scientific quest,while hydrogen-rich compounds have emerged as highly promising candidates.Here,we systematically investigated the thermodynamic stability,crystal structure,electronic properties,and superconductivity within the ternary Y-Hf-H system under high pressure.Several distinct hydrides have been revealed,in which the hydrogen atoms are present in various hydrogenic motifs.A15-type hydride P_(m)3-YHfH_(6)with isolated H−is predicted to be dynamically stabilized down to 10GPa.The H atoms form pentagonal graphene-like layered-H10 anions in the Hf plane of P6-YHfH_(19),with aT_(c)of 95K at 100GPa.There are H cages in C_(mmm)-Y_(3)HfH_(24),and attributed to the robust electron–phonon coupling and high electronic density of states of hydrogen at the Fermi level,it demonstrates near-room temperature superconductivity with a T_(c)of 275K at 250GPa.Our work makes contributions to the understanding of the fundamental properties of ternary hydrides under high pressure and provides essential references for further research in this field. 展开更多
关键词 hydrogen rich compounds thermodynamic stability ternary y hf h system hydrogenic motifs crystal structure electronic properties high pressure superconductivity
原文传递
Heat Transfer and Flow Dynamics of Ternary Hybrid Nanofluid over a Permeable Disk underMagnetic Field and Joule Heating Effects
7
作者 Umi Nadrah Hussein Najiyah Safwa Khashi’ie +1 位作者 Norihan Md Arifin Ioan Pop 《Frontiers in Heat and Mass Transfer》 2025年第2期383-395,共13页
This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina,copper,and silica/titania nanoparticles dispersed in water.The analysis considers the effects of suction,mag... This study investigates the heat transfer and flow dynamics of a ternary hybrid nanofluid comprising alumina,copper,and silica/titania nanoparticles dispersed in water.The analysis considers the effects of suction,magnetic field,and Joule heating over a permeable shrinking disk.Amathematicalmodel is developed and converted to a systemof differential equations using similarity transformation which then,solved numerically using the bvp4c solver in Matlab software.The study introduces a novel comparative analysis of alumina-copper-silica and alumina-coppertitania nanofluids,revealing distinct thermal conductivity behaviors and identifying critical suction values necessary for flow stabilization.Dual solutions are found within a specific range of parameters such that the minimum required suction values for flow stability,with S_(c)=1.2457 for alumina-copper-silica/water and S_(c)=1.2351 for alumina-coppertitania/water.The results indicate that increasing suction by 1%enhances the skin friction coefficient by up to 4.17%and improves heat transfer efficiency by approximately 1%,highlighting its crucial role in stabilizing the opposing flow induced by the shrinking disk.Additionally,the inclusion of 1%silica nanoparticles reduces both skin friction and heat transfer rate by approximately 0.28%and 0.85%,respectively,while 1%titania concentration increases skin friction by 3.02%but results in a slight heat transfer loss of up to 0.61%.These findings confirm the superior thermal performance of alumina-copper-titania/water,making it a promising candidate for enhanced cooling systems,energy-efficient heat exchangers,and industrial thermal management applications. 展开更多
关键词 Dual solutions Joule heating magnetic field shrinking disk suction ternary hybrid nanofluid
在线阅读 下载PDF
Heat Transfer Analysis of Temperature-Sensitive Ternary Nanofluid in MHD and Porous Media Flow:Influence of Volume Fraction and Shape
8
作者 Barkilean Jaismitha Jagadeesan Sasikumar +2 位作者 Samad Noeiaghdam Unai Fernandez-Gamiz Thirugnanasambandam Arunkumar 《Frontiers in Heat and Mass Transfer》 2025年第5期1529-1554,共26页
The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel,focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field.This st... The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel,focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field.This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport.By suspending nanoparticles of diverse shapes-platelets,blades,and spheres in a hybrid base fluid comprising cobalt ferrite,magnesium oxide,and graphene oxide,the study examines the influence of both small and large volume fraction values.The governing equations are converted into a dimensionless form.With suitable assumptions,the partial differential equations(PDEs)are simplified into ordinary differential equations(ODEs),which are then solved using an analyticalmethod.Theproposed solution is verified using a numerical approach with the BVP4C solver.The analysis yields detailed graphs that depict the behavior of key fluid flow parameters,such as velocity,temperature,concentration,skin friction,Nusselt number,and Sherwood number,within the tapered asymmetric channel. 展开更多
关键词 Heat transfer shape factor ternary nanofluid flow TEMPERATURE-DEPENDENT linear slope regression
在线阅读 下载PDF
Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries
9
作者 Xiangyue Li Dexin Zhu +5 位作者 Kunmin Pan Xiaoye Zhou Jiaming Zhu Yingxue Wang Yongpeng Ren Hong-Hui Wu 《Chinese Chemical Letters》 2025年第5期691-694,共4页
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr... Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability. 展开更多
关键词 LNCM ternary cathode material Discharge capacity Feature engineering Machine learning SHAP analysis
原文传递
19.1%Efficiency PM6:Y6 based ternary organic solar cells enabled by isomerization engineering of A_(2)-A_(1)-D-A_(1)-A_(2)type vip molecules
10
作者 Huijuan Ran Bingjie Zhou +6 位作者 Leyi Tang Kehui Wang Jia Yao Bo Xiao Yunfeng Xu Qing Guo Erjun Zhou 《Journal of Energy Chemistry》 2025年第9期577-583,I0015,共8页
In recent years,the ternary strategy of adding a vip molecule to the active layer has been proven to be effective for improving the performance of organic solar cells(OSCs).Isomerization engineering of the vip mol... In recent years,the ternary strategy of adding a vip molecule to the active layer has been proven to be effective for improving the performance of organic solar cells(OSCs).Isomerization engineering of the vip molecule is a simple method to increase the amount of promising material,but there are only limited reports,and the structure-property relationships are still unclear.In this work,we synthesized three isomers named BTA5-F-o,BTA5-F-m,and BTA5-F-p,with different fluorine substitution positions,to study the influence of isomerization on the photovoltaic performance.After introducing them as the third components to the classic host system PM6:Y6,all three ternary devices showed improved power conversion efficiency(PCEs)compared to the binary system(PCE of 17.46%).The ternary OSCs based on BTA5-F-o achieved a champion PCE of 19.11%,while BTA5-F-m and BTA5-F-p realized PCEs of 18.65%and 18.45%,respectively.Mechanism studies have shown that the dipole moment of the BTA5-F-o end group is closer to that of the Y6 end group,despite the three isomers with almost identical energy levels and optical properties.It is indicated that the electron attraction ability of BTA5-F-o best matches that of Y6,which leads to the higher charge mobility,less charge recombination,and stronger exciton dissociation and extraction ability in the ternary blend system.This study suggests that rationally adjusting the position of substituents in the terminal group can be an effective way to construct nonfullerene vip acceptors to achieve highly efficient ternary OSCs. 展开更多
关键词 ternary organic solar cells vip molecules ISOMERIZATION Nonfullerene acceptors Charge transfer
在线阅读 下载PDF
Doping effects and role conversion of CeO_(2)in 0.3PZN-0.7PZT ternary piezoelectric ceramics with enhanced electrical properties
11
作者 Yu Chen Lingfeng Li +3 位作者 Le Mi Xingyu Wang Zhijun Wang Qingyuan Wang 《Journal of Rare Earths》 2025年第5期1035-1045,共11页
In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)w... In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)were synthesized by a conventional solid-state reaction route,specific attentions was focused on the effects of CeO_(2)dopants on the structures and electrical properties of the 0.3PZN-0.7PZT ceramics,revealing the role conve rsion of CeO_(2)dopants with its doping amount(x).When less CeO_(2)(x≤0.2)is introduced into 0.3PZN-0.7PZT,the prepared ceramics are identified as the coexistence of rhombohedral and tetragonal phases,also involved with an increased grain size and a reduced atomic ratio of Pb/(Zr+Ti+Zn+Nb).The increased remanent polarization(Pr)and deceased coercive filed(Ec),as well as improved dielectric permittivity(er)and piezoelectric coefficient(d_(33))de monstrate the donor substitution of Ce^(3+)for Pb^(2+)at the A-site of perovskite lattice.Conversely,the introduction of excessive CeO_(2)(x>0.2)causes a reversal evolution in the electrical properties of ceramics,suggesting that some of the introduced cerium element tends to become Ce4+,which equivalently substitutes for Zr^(4+)at the B-site.Additionally,the diffused phase transition(DPT)behaviors of the 0.3PZN-0.7PZT-xCe ceramics were investigated by the modified Curie-Weiss Law.The sample with x=0.2 shows reduced DPT character and optimized electrical properties,including TC=297℃,εr=1400,d_(33)=480 pC/N,tanδ=1.6%,kp=65%,d_(33)·g_(33)=16.32×10^(-12)m^(2)/N,Pr=38.3μC/cm^(2)and Ec=1.02 kV/mm.These enhanced electrical properties not only are contributed by the donor substitution effect of Ce^(3+),but also benefit from the optimized morphotropic phase boundary that is close to the tetragonal-rich side. 展开更多
关键词 PZN-PZT ternary piezoelectric ceramics CeO_(2) Donor substitution Morphotropic phase boundary Rare earths
原文传递
Double Conductive Panel System Cooling Solutions:L-Shaped Channel and Vented Cavity under Ternary Nanofluid Enhanced Non-Uniform Magnetic Field
12
作者 Fatih Selimefendigil Kaouther Ghachem +2 位作者 Hind Albalawi Badr M.AlShammari Lioua Kolsi 《Computer Modeling in Engineering & Sciences》 2025年第7期899-925,共27页
Cooling system design applicable to more than one photovoltaic(PV)unit may be challenging due to the arrangement and geometry of the modules.Different cooling techniques are provided in this study to regulate the temp... Cooling system design applicable to more than one photovoltaic(PV)unit may be challenging due to the arrangement and geometry of the modules.Different cooling techniques are provided in this study to regulate the temperature of conductive panels that are arranged perpendicular to each other.The model uses two vented cavity systems and one L-shaped channel with ternary nanofluid enhanced non-uniform magnetic field.Their cooling performances and comparative results between different systems are provided.The finite element method is used to conduct a numerical analysis for a range of values of the following:the strength of themagnetic field(Hartmann number(Ha)between 0 and 50),the inclination of the magnetic field(γbetween 0 and 90),and the loading of nanoparticles in the base fluid(ϕbetween 0 and 0.03),taking into account both uniformand non-uniformmagnetic fields.For the L-shaped channel and vented cavities,vortex size is controlled by imposing magnetic field and adjusting its strength.Whether uniform or non-uniform magnetic field is applied affects the cooling performances for different cooling configurations.Temperature drops of the horizontal panel with different magnetic field strengths by using channel cooling,vented cavity-1 and vented cavity-2 systems for uniformmagnetic are 11℃,21.5℃,and 3℃when the reference case of Ha=0 is considered for the same cooling systems.However,they become 9.5℃,13.5℃,and 12.5℃when nonuniform magnetic field is used.In the presence of uniform magnetic field effects and changing its magnitude,the use of cooling channel in vented cavity-1 and vented cavity-2 systems results in temperature drops of 4℃,10.8℃,and 3.8℃for vertical panels.On the other hand,when non-uniform magnetic field effects are present,they become 0.5℃,2.1℃,and 9℃.For L-channel cooling,the average Nu for the horizontal panel is more affected byγ,andNu rises asγrises.With increasing nanoparticle loading of ternary nanofluid,the average panel surface temperature shows a linear drop.For the horizontal panel,the temperature declines for nanofluid at the highest loading are 4℃,10℃,and 12℃as compared to using only base fluid.The values of 5℃,7℃,and 11℃are obtained for the vertical panel.Different cooling systems’performance is estimated using artificial neural networks.The method captures the combined impact of applying non-uniformmagnetic field and nanofluid together on the cooling performancewhile accounting for varied cooling strategies for both panels. 展开更多
关键词 Double panel ternary nanofluid PV cooling non-uniform magnetic field artificial neural network
在线阅读 下载PDF
Rationally designing the composition and phase structure of Ni-Fe-Mn ternary layered oxide system for high-voltage sodium-ion batteries
13
作者 Bo Peng Ji Shi +4 位作者 Feng Zhu Zihao Zhou Xing Huang Jie Xu Lianbo Ma 《Journal of Energy Chemistry》 2025年第5期28-35,共8页
Sodium-ion batteries are the prominent device for stationary energy storage system and low-speed electric vehicles.However,the practical application is still limited by the unsatisfied performance and high cost of the... Sodium-ion batteries are the prominent device for stationary energy storage system and low-speed electric vehicles.However,the practical application is still limited by the unsatisfied performance and high cost of the cathode side,which strictly requires the development of high voltage,high capacity,and earth-abundant cathode material.Ni-Fe-Mn ternary layered oxide has been recognized as one of the most promising standard type of cathodes.However,the composition and phase structure on high-voltage characteristics have not been well investigated.Herein,selecting the typically high-voltage cathode of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)as a parent material,we fabricate ten Ni-Fe-Mn ternary layered oxides through replacing the Ni,Mn,or both Ni and Mn by Fe.The thermodynamically stable phase diagram for those materials is presented.The electrochemical properties for all the samples are investigated in detail.Three potential Ni-Fe-Mn ternary layered oxides are picked up considering the energy density,cycle stability,kinetics,cost price,and working voltage,which demonstrate great potential for surpassing the performance of lithium iron phosphate.The related electrochemical reaction and fading mechanism are well revealed.This work provides some new foundational Ni-Fe-Mn ternary layered materials for high-voltage sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries High-voltage cathode Ni-Fe-Mn ternary materials Phase structure Electrochemical reaction mechanism
在线阅读 下载PDF
Ambient temperature catalyzed air-oxidation of 5-hydroxymethylfurfural via ternary metal and oxygen vacancies
14
作者 Yunlei Zhang Yiran Liu +5 位作者 Qinghua Xia Yao Chen Lingzhao Kong Xingchen Yan Wen Guan Jianming Pan 《Green Energy & Environment》 2025年第7期1568-1582,共15页
Catalytic oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA,an alternative bioplastic monomer to petroleum-derived terephthalic acid),has been identified as an important bioma... Catalytic oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA,an alternative bioplastic monomer to petroleum-derived terephthalic acid),has been identified as an important biomass conversion reaction in bio-based polyester industry.However,it is still challenging to acquire a high FDCA yield from the selective oxidation of HMF at low temperatures.Herein,a ternary metal-based catalyst was prepared by loading AuPdPt noble metal nanoparticles on the oxygen-rich vacancy titanium dioxide layer deposited on natural clay mineral halloysite nanotubes(HNTs),and the catalytic activity was examined for air-oxidation of HMF to FDCA in water at ambient temperature(30℃).By adjusting the Au/Pd/Pt ratio,a 93.6%FDCA yield was achieved with the optimal Au_(0.5)Pd_(0.2)Pt_(0.3)/TiO_(2)@HNTs catalyst,which revealed an impressive FDCA formation rate of 67.58 mmol g^(-1)h^(-1)and an excellent TOF value of 17.54 h^(-1)under normal air pressure at 30℃,surpassing the performance of mono-and bimetallic-based catalysts.Theoretical calculation and catalytic performance study clarified the structure-activity relationship.It was found that the ternary metal and oxygen vacancies revealing synergistic enhancement of ambient temperature catalyzed HMF air-oxidation via electronic structure tuning and adsorption intensification.DFT and kinetics study demonstrated that the presence of ternary metal significantly improved the adsorption capacity of substrate and enhanced the rate-determining step of the key intermediate 5-hydroxymethyl-2-furanocarboxylic acid(HMFCA)oxidation when compared to mono-and bimetal.Additionally,the TiO_(2)@HNTs support with high oxygen vacancy concentration facilitated the adsorption of oxygen,synergistically working with the ternary metal to activate and low the energy barriers for the generation of superoxide radical,thus enhancing the FDCA formation.This work offers a novel strategy for designing ternary metal-based catalysts for low-energy catalytic oxidation reactions. 展开更多
关键词 5-hydroxymethylfurfural air-oxidation 2 5-furandicarboxylic acid Ambient temperature Normal pressure ternary metal
在线阅读 下载PDF
Huffman-Code-Based Ternary Tree Transformation
15
作者 Qing-Song Li Huan-Yu Liu +2 位作者 Qingchun Wang Yu-Chun Wu Guo-Ping Guo 《Chinese Physics Letters》 2025年第10期1-12,共12页
Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations a... Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems. 展开更多
关键词 quantum computer weighted pauli weightwhich Huffman code based ternary tree transformation simulate fermionic systems fermion qubit transformations characterize circuit depth hamiltonian termsin fermionic systems
原文传递
Liposomal photoelectrochemical immunoassay for low-abundance proteins with ternary transition metal sulfides for signal amplification
16
作者 Shuo Tian Shuyun Chen +1 位作者 Yunsen Wang Dianping Tang 《Chinese Chemical Letters》 2025年第7期240-243,共4页
Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,... Development of accurate analytical protocols for cancer biomarkers is used for the initial prescreening of malignant tumors,disease surveillance,and efficacy assessment with significant clinical benefits.In this work,we reported a liposome-mediated signal-off photoelectrochemical(PEC)immunoassay for the sensitive detection of carcinoembryonic antigen(CEA)using ternary transition metal sulfide CuS/ZnCdS as the photoactive material.Good photocurrents were acquired on the basis of specific oxidation reaction of dopamine on the CuS/ZnCdS.The energy band relationship of CuS/ZnCdS was determined,and the wellmatched oxidation potential of dopamine was verified.To achieve accurate recovery of low-abundance CEA,systematic PEC evaluation from human serum samples was performed by combining with classical immunoreaction and liposome-induced dopamine amplification strategy with high stability and selectivity.Under optimum conditions,PEC immunoassay displayed good photocurrent responses toward target CEA with a dynamic linear range of 0.1-50 ng/mL with a detection limit of 31.6 pg/mL.Importantly,this system by combining with a discussion of energy level matching between semiconductor energy bands and small-molecules opens a new horizon for development of high-efficient PEC immunoassays. 展开更多
关键词 Photoelectrochemical immunoassay Liposome labelling Carcinoembryonic antigen Signal amplification ternary transition metal sulfides
原文传递
A highly crystalline small molecule donor based on bithiazole units enabling efficient ternary all-small-molecule organic solar cells
17
作者 Wentao Zou Yixuan Xu +9 位作者 Ke Sun Wenqing Zhang Huajun Xu Yuanyuan Kan Tao Liu Bingsuo Zou Yanna Sun Xiaotao Hao Yingguo Yang Ke Gao 《Journal of Energy Chemistry》 2025年第5期789-794,共6页
All-small-molecule organic solar cells(ASM-OSCs)have garnered widespread attention in recent years.However,their power conversion efficiencies(PCEs)still fall behind those of polymer donor-based devices,primarily due ... All-small-molecule organic solar cells(ASM-OSCs)have garnered widespread attention in recent years.However,their power conversion efficiencies(PCEs)still fall behind those of polymer donor-based devices,primarily due to the challenge of realizing optimized morphology in ASM-OSCs.Here,a highly crystalline small molecule donor(SMD)named ZW2 is synthesized and incorporated into the Zn PTSEH:6TIC system.The addition of ZW2 synergistically regulates the morphology,molecular crystallinity,and molecular packing of blends,facilitating efficient charge transport and suppressing charge recombination.Consequently,an impressive PCE of 16.30%was delivered in the ternary device.This work highlights the significance of employing a highly crystalline SMD as the third component in tuning the crystallinity and morphology of blends,providing feasibility for achieving high-efficiency ASM-OSCs. 展开更多
关键词 All-small-molecule organic solar cell CRYSTALLINITY Morphology Small molecule donor ternary organic solar cells
在线阅读 下载PDF
Machine learning empowers efficient design of ternary organic solar cells with PM6 donor
18
作者 Kiran A.Nirmal Tukaram D.Dongale +2 位作者 Santosh S.Sutar Atul C.Khot Tae Geun Kim 《Journal of Energy Chemistry》 2025年第1期337-347,共11页
Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, ex... Organic solar cells(OSCs) hold great potential as a photovoltaic technology for practical applications.However, the traditional experimental trial-and-error method for designing and engineering OSCs can be complex, expensive, and time-consuming. Machine learning(ML) techniques enable the proficient extraction of information from datasets, allowing the development of realistic models that are capable of predicting the efficacy of materials with commendable accuracy. The PM6 donor has great potential for high-performance OSCs. However, it is crucial for the rational design of a ternary blend to accurately forecast the power conversion efficiency(PCE) of ternary OSCs(TOSCs) based on a PM6 donor.Accordingly, we collected the device parameters of PM6-based TOSCs and evaluated the feature importance of their molecule descriptors to develop predictive models. In this study, we used five different ML algorithms for analysis and prediction. For the analysis, the classification and regression tree provided different rules, heuristics, and patterns from the heterogeneous dataset. The random forest algorithm outperforms other prediction ML algorithms in predicting the output performance of PM6-based TOSCs. Finally, we validated the ML outcomes by fabricating PM6-based TOSCs. Our study presents a rapid strategy for assessing a high PCE while elucidating the substantial influence of diverse descriptors. 展开更多
关键词 Machine learning ternary organic solarcells PM6 donor PCE
在线阅读 下载PDF
Collaborative optimization method for sintering schedule of ternary cathode materials under microscopic coupling constraints
19
作者 Jia-yao CHEN Ning CHEN +4 位作者 Hong-zhen LIU Zheng-wei XU Zhi-xing WANG Wei-hua GUI Wen-jie PENG 《Transactions of Nonferrous Metals Society of China》 2025年第11期3902-3918,共17页
A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic the... A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic thermodynamics and a growth kinetics model based on neural networks were established.Then,optimization formulations were constructed in three stages to obtain an optimal sintering schedule that minimized energy consumption for different requirements.Simulations demonstrate that the models accurately predict the oxygen vacancy concentrations and grain size,with root mean square errors of approximately 5%and 3%,respectively.Furthermore,the optimized sintering schedule not only meets the required quality standards but also reduces sintering time by 12.31%and keeping temperature by 11.96%.This research provides new insights and methods for the preparation of ternary cathode materials. 展开更多
关键词 ternary cathode materials microscopic thermodynamics oxygen vacancy concentration grain growth sintering schedule optimization
在线阅读 下载PDF
Oxalate modification enabled advanced phosphate removal of nZVI:In Situ formed surface ternary complex and altered multi-stage adsorption process
20
作者 Shiyu Cao Jiangshan Li +3 位作者 Yanbiao Shi Furong Guo Tingjuan Gao Lizhi Zhang 《Journal of Environmental Sciences》 2025年第3期79-87,共9页
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform... Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal. 展开更多
关键词 Oxalate modification Advanced phosphate removal Nano zero-valent iron(nZVI) Surface ternary complex Multi-stage adsorption
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部