Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-...Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function - the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation.展开更多
Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simul...Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.展开更多
A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position i...A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position index of blocked messages is chosen, and blocked massages translated into ASCII code values are employed as the iteration time of the chaotic tent map. The final 128-bit hash value is generated by logical XOR operation on intermediate hash values. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function.展开更多
The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,tr...The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,traditional encryption algorithms demand considerable computational effort for real-time audio encryption.To address these challenges,this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps.The audio data is first shuffled using Tent map for the random permutation.The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map.Finally,the Exclusive OR(XOR)operation is applied between the generated key and the shuffled audio to yield the cipher audio.The experimental results prove that the proposed method surpassed the other techniques by encrypting two types of audio files,as mono and stereo audio files with large sizes up to 122 MB,different sample rates 22,050,44,100,48,000,and 96,000 for WAV and 44,100 sample rates for MP3 of size 11 MB.The results show high Mean Square Error(MSE),low Signal-to-Noise Ratio(SNR),spectral distortion,100%Number of Sample Change Rate(NSCR),high Percent Residual Deviation(PRD),low Correlation Coefficient(CC),large key space 2^(616),high sensitivity to a slight change in the secret key and that it can counter several attacks,namely brute force attack,statistical attack,differential attack,and noise attack.展开更多
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved...To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.展开更多
基金Project supported by the Guangxi Provincial Natural Science Foundation,China(Grant No.2014GXNSFBA118271)the Research Project of Guangxi University,China(Grant No.ZD2014022)+4 种基金the Fund from Guangxi Provincial Key Laboratory of Multi-source Information Mining&Security,China(Grant No.MIMS14-04)the Fund from the Guangxi Provincial Key Laboratory of Wireless Wideband Communication&Signal Processing,China(Grant No.GXKL0614205)the Education Development Foundation and the Doctoral Research Foundation of Guangxi Normal Universitythe State Scholarship Fund of China Scholarship Council(Grant No.[2014]3012)the Innovation Project of Guangxi Graduate Education,China(Grant No.YCSZ2015102)
文摘Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function - the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation.
基金Supported by the National Natural Science Foundation of China (No.60372004) and Natural Science Foundation of Guangdong Province (No.20820)
文摘Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.
基金Supported by the National Natural Science Foundation of China (No. 61173178, 61003247, 61070246) and the Fundamental Research Funds for the Central University (No. COJER1018002,cdjerl018003).
文摘A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position index of blocked messages is chosen, and blocked massages translated into ASCII code values are employed as the iteration time of the chaotic tent map. The final 128-bit hash value is generated by logical XOR operation on intermediate hash values. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function.
文摘The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,traditional encryption algorithms demand considerable computational effort for real-time audio encryption.To address these challenges,this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps.The audio data is first shuffled using Tent map for the random permutation.The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map.Finally,the Exclusive OR(XOR)operation is applied between the generated key and the shuffled audio to yield the cipher audio.The experimental results prove that the proposed method surpassed the other techniques by encrypting two types of audio files,as mono and stereo audio files with large sizes up to 122 MB,different sample rates 22,050,44,100,48,000,and 96,000 for WAV and 44,100 sample rates for MP3 of size 11 MB.The results show high Mean Square Error(MSE),low Signal-to-Noise Ratio(SNR),spectral distortion,100%Number of Sample Change Rate(NSCR),high Percent Residual Deviation(PRD),low Correlation Coefficient(CC),large key space 2^(616),high sensitivity to a slight change in the secret key and that it can counter several attacks,namely brute force attack,statistical attack,differential attack,and noise attack.
基金by National Natural Science Foundation of China(62373142,62033014)Natural Science Foundation of Hunan Province(2025JJ70017,2022JJ50074).
文摘To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.