The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces ...The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update(BDTMCDIncreUpdate),which combines distributed computing,storage technology,and incremental update techniques to provide an efficient and effective means for clustering analysis.Firstly,the original dataset is divided into multiple subblocks,and distributed computing resources are utilized to process the sub-blocks in parallel,enhancing efficiency.Then,initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain preliminary results.When new data arrives,incremental update technology is employed to update the core tensor and factor matrix,ensuring that the clustering model can adapt to changes in data.Finally,by combining the updated core tensor and factor matrix with historical computational results,refined clustering results are obtained,achieving real-time adaptation to dynamic data.Through experimental simulation on the Aminer dataset,the BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy(ACC)and normalized mutual information(NMI)metrics,achieving an accuracy rate of 90%and an NMI score of 0.85,which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios.Therefore,the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis,integrating distributed computing,incremental updates,and tensor-based multi-clustering techniques.It not only improves the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for its effectiveness and accuracy through experiments.This method shows great potential in real-world applications where dynamic data growth is common,and it is of significant importance for advancing the development of data analysis technology.展开更多
Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on sp...Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.展开更多
BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progressi...BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.展开更多
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ...In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fractur...Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.展开更多
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli...The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.展开更多
This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great...This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained.This ResNet-based moment tensor prediction technology,whose input is raw recordings,does not require the extraction of data features in advance.First,we tested the network using synthetic data and performed a quantitative assessment of the errors.The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase.Next,we tested the network using real microseismic data and compared the results with those from traditional inversion methods.The error in the results was relatively small compared to traditional methods.However,the network operates more efficiently without requiring manual intervention,making it highly valuable for near-real-time monitoring applications.展开更多
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis...Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.展开更多
Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either dire...Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.展开更多
When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and ne...When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.展开更多
Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neur...Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neural-network-based variational method.Tensor networks are accurate,but their application is often limited to low-dimensional systems due to the high computational complexity in high-dimensional systems.The neural network method applies to systems with general topology.However,as a variational method,it is not as accurate as tensor networks.In this work,we propose an integrated approach,tensor-network-based variational autoregressive networks(TNVAN),that leverages the strengths of both tensor networks and neural networks:combining the variational autoregressive neural network’s ability to compute an upper bound on free energy and perform unbiased sampling from the variational distribution with the tensor network’s power to accurately compute the partition function for small sub-systems,resulting in a robust method for precisely estimating free energy.To evaluate the proposed approach,we conducted numerical experiments on spin glass systems with various topologies,including two-dimensional lattices,fully connected graphs,and random graphs.Our numerical results demonstrate the superior accuracy of our method compared to existing approaches.In particular,it effectively handles systems with longrange interactions and leverages GPU efficiency without requiring singular value decomposition,indicating great potential in tackling statistical mechanics problems and simulating high-dimensional complex systems through both tensor networks and neural networks.展开更多
The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned...The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.展开更多
The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-d...The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness.展开更多
In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events cau...In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.展开更多
The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr...The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.展开更多
Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special...Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.展开更多
This paper addresses Pinching problems in Möbius geometry for hypersurfaces with Möbius isotropy in the unit sphere.By implementing the minimum norm tensor principle,we rigorously estimate the squared norm o...This paper addresses Pinching problems in Möbius geometry for hypersurfaces with Möbius isotropy in the unit sphere.By implementing the minimum norm tensor principle,we rigorously estimate the squared norm of the quadratic gradient term associated with the Möbius second fundamental form.This analysis yields a critical inequality governing the geometric config-uration.Leveraging this inequality,we subsequently prove a Pinching theorem characterizing the eigenvalues of the Blaschke tensor.展开更多
As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion ...As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion method that considers anisotropy to improve the effectiveness of inversion accuracy and interpretation accuracy of data. This study is based on the 3D fi nite-diff erence forward modeling of axis anisotropy using the reciprocity theorem to calculate the Jacobian matrix by applying the search method to automatically search for the Lagrange operator. The aim is to establish inversion iteration equations to achieve the axis anisotropic Occam's 3D inversion of tensor CSAMT in data space. Further, we obtain an underground axis anisotropic 3D geoelectric model by inverting the impedance data of tensor CSAMT. Two synthetic data examples show that using the isotropic tensor CSAMT algorithm to directly invert data in anisotropic media can generate false anomalies, leading to incorrect geological interpretations. Meanwhile, the proposed anisotropic inversion algorithm can eff ectively improve the accuracy of data inversion in anisotropic media. Further, the inversion examples verify the eff ectiveness and stability of the algorithm.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.61972208,62102194 and 62102196)National Natural Science Foundation of China(Youth Project)(No.62302237)+3 种基金Six Talent Peaks Project of Jiangsu Province(No.RJFW-111),China Postdoctoral Science Foundation Project(No.2018M640509)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX22_1019,KYCX23_1087,KYCX22_1027,KYCX23_1087,SJCX24_0339 and SJCX24_0346)Innovative Training Program for College Students of Nanjing University of Posts and Telecommunications(No.XZD2019116)Nanjing University of Posts and Telecommunications College Students Innovation Training Program(Nos.XZD2019116,XYB2019331).
文摘The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update(BDTMCDIncreUpdate),which combines distributed computing,storage technology,and incremental update techniques to provide an efficient and effective means for clustering analysis.Firstly,the original dataset is divided into multiple subblocks,and distributed computing resources are utilized to process the sub-blocks in parallel,enhancing efficiency.Then,initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain preliminary results.When new data arrives,incremental update technology is employed to update the core tensor and factor matrix,ensuring that the clustering model can adapt to changes in data.Finally,by combining the updated core tensor and factor matrix with historical computational results,refined clustering results are obtained,achieving real-time adaptation to dynamic data.Through experimental simulation on the Aminer dataset,the BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy(ACC)and normalized mutual information(NMI)metrics,achieving an accuracy rate of 90%and an NMI score of 0.85,which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios.Therefore,the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis,integrating distributed computing,incremental updates,and tensor-based multi-clustering techniques.It not only improves the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for its effectiveness and accuracy through experiments.This method shows great potential in real-world applications where dynamic data growth is common,and it is of significant importance for advancing the development of data analysis technology.
基金Supported by National Natural Science Foundation of China,No.32270768,No.82273970,No.32070726,and No.82370715National Key R&D Program of China,No.2023YFC2507904the Innovation Group Project of Hubei Province,No.2023AFA026.
文摘Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.
基金Supported by National Foundation for Science and Technology Development(NAFOSTED)-Ministry of Science and Technology,Viet Nam,No.108.02-2019.307.
文摘BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.
基金Supported by National Nature Science Foundation(12371381)Nature Science Foundation of Shanxi(202403021222270)。
文摘In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金the financial support from Intergovernmental International Science and Technology Innovation Cooperation Key Project(2022YFE0128400)National Natural Science Foundation of China(42307209)+2 种基金Shanghai Pujiang Program(2022PJD076)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365)Natural Science Foundation of Qinghai Province(No.2024-ZJ-717).
文摘Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.
基金supported by the National Natural Science Foundation of China(No.52275104)the Science and Technology Innovation Program of Hunan Province(No.2023RC3097).
文摘The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.
基金supported by the National Natural Science dation Foun-of China(Grant Number 42272204)Key Laboratory of Coal sources Re-Exploration and Comprehensive Utilization,Ministry of Natural Resources,Canada(SMDZ-KF2024-4)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXDC06)supported in part by open fund project of State Key Laboratory for Fine Exploration and Intelligent Development of Coal Research(SKLCRSM23KFA04)。
文摘This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained.This ResNet-based moment tensor prediction technology,whose input is raw recordings,does not require the extraction of data features in advance.First,we tested the network using synthetic data and performed a quantitative assessment of the errors.The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase.Next,we tested the network using real microseismic data and compared the results with those from traditional inversion methods.The error in the results was relatively small compared to traditional methods.However,the network operates more efficiently without requiring manual intervention,making it highly valuable for near-real-time monitoring applications.
基金funded by the National Key R&D Program of China(Grant no.2018YFA0702504)the Sinopec research project(P22162).
文摘Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.
基金funded by the National Key R&D Program of China(Grant No.2024YFE0102500)the National Natural Science Foundation of China(Grant No.12404568)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J00904)the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area,China and the Undergraduate Research Project from HKUST(Guangzhou).
文摘Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD04076)the Guangxi Key Research and Development Projects of China(GuikeAB21238004)the Agricultural Science and Technology Innovation Program.
文摘When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.
基金supported by Projects 12325501,12047503,and 12247104 of the National Natural Science Foundation of ChinaProject ZDRW-XX-2022-3-02 of the Chinese Academy of Sciencessupported by the Innovation Program for Quantum Science and Technology project 2021ZD0301900。
文摘Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neural-network-based variational method.Tensor networks are accurate,but their application is often limited to low-dimensional systems due to the high computational complexity in high-dimensional systems.The neural network method applies to systems with general topology.However,as a variational method,it is not as accurate as tensor networks.In this work,we propose an integrated approach,tensor-network-based variational autoregressive networks(TNVAN),that leverages the strengths of both tensor networks and neural networks:combining the variational autoregressive neural network’s ability to compute an upper bound on free energy and perform unbiased sampling from the variational distribution with the tensor network’s power to accurately compute the partition function for small sub-systems,resulting in a robust method for precisely estimating free energy.To evaluate the proposed approach,we conducted numerical experiments on spin glass systems with various topologies,including two-dimensional lattices,fully connected graphs,and random graphs.Our numerical results demonstrate the superior accuracy of our method compared to existing approaches.In particular,it effectively handles systems with longrange interactions and leverages GPU efficiency without requiring singular value decomposition,indicating great potential in tackling statistical mechanics problems and simulating high-dimensional complex systems through both tensor networks and neural networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.12347104,U24A2017,12461160276,and 12175075)the National Key Research and Development Program of China(Grant No.2023YFC2205802)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20243060 and BK20233001)in part by the State Key Laboratory of Advanced Optical Communication Systems and Networks,China。
文摘The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.
基金supported in part by the National Nature Science Foundation of China under Project 62166047in part by the Yunnan International Joint Laboratory of Natural Rubber Intelligent Monitor and Digital Applications under Grant 202403AP140001in part by the Xingdian Talent Support Program under Grant YNWR-QNBJ-2019-270.
文摘The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness.
基金the Graduate Innovation Program of China University of Mining and Technology,the Fundamental Research Funds for the Central Universities(Grant No.2023WLKXJ017)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_2776)the Shandong Energy Group(Grant No.SNKJ2022BJ03-R28)。
文摘In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.
基金Supported by the National High-Tech Research Project(GJSCB-HFGDY-2024-004)National Natural Science Foundation of China(12402305)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20232200)China Postdoctoral Science Foundation(2024M762703)Sichuan Science and Technology Program(2025ZNSFSC1352)。
文摘The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB2903904。
文摘Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.
文摘This paper addresses Pinching problems in Möbius geometry for hypersurfaces with Möbius isotropy in the unit sphere.By implementing the minimum norm tensor principle,we rigorously estimate the squared norm of the quadratic gradient term associated with the Möbius second fundamental form.This analysis yields a critical inequality governing the geometric config-uration.Leveraging this inequality,we subsequently prove a Pinching theorem characterizing the eigenvalues of the Blaschke tensor.
基金supported by Heilongjiang Province Basic Research Business Expenses for Universities Heilongjiang University Special Fund Project (Grant No. 2023-KYYWF-1494)the Natural Science Foundation of Jiangxi Province (Grant No. 20212BAB213023)。
文摘As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion method that considers anisotropy to improve the effectiveness of inversion accuracy and interpretation accuracy of data. This study is based on the 3D fi nite-diff erence forward modeling of axis anisotropy using the reciprocity theorem to calculate the Jacobian matrix by applying the search method to automatically search for the Lagrange operator. The aim is to establish inversion iteration equations to achieve the axis anisotropic Occam's 3D inversion of tensor CSAMT in data space. Further, we obtain an underground axis anisotropic 3D geoelectric model by inverting the impedance data of tensor CSAMT. Two synthetic data examples show that using the isotropic tensor CSAMT algorithm to directly invert data in anisotropic media can generate false anomalies, leading to incorrect geological interpretations. Meanwhile, the proposed anisotropic inversion algorithm can eff ectively improve the accuracy of data inversion in anisotropic media. Further, the inversion examples verify the eff ectiveness and stability of the algorithm.