期刊文献+
共找到113,509篇文章
< 1 2 250 >
每页显示 20 50 100
A united tension/compression asymmetry micro-mechanical model for nickel-base single-crystal alloys
1
作者 Jian-feng Xiao Hai-tao Cui +1 位作者 Hong-jian Zhang Wei-dong Wen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第6期621-630,共10页
In recent years, the micro-deformation mechanisms of the tension/compression behavior for nickel-base single-crystal superalloys have been studied extensively and general agreements have been derived. Based on these r... In recent years, the micro-deformation mechanisms of the tension/compression behavior for nickel-base single-crystal superalloys have been studied extensively and general agreements have been derived. Based on these researches, a new model called united tension/compression asymmetry micro-mechanical model (UTCAM) has been proposed, which can effectively estimate the initial yield strength of nickel-base single-crystal (SC) superalloys under different loading directions. Considering the combined effects of octahedral slip system and cubic slip system, slip control factor is introduced in the UTCAM to determine the type of the open slip system of nickel-base single-crystal superalloys during deformation, thus making this model cover a rather wide range of application. Furthermore, the UTCAM is applied to hot tension and compression tests of three typical nickel-base SC superalloys (PWA1480-593 ℃, RENE N4-760 ℃ and DD407-760 ℃). The predicted initial yield strengths of the nickel-base SC superalloys are in good agreement with the experimental results, and the UTCAM proves to be effective. 展开更多
关键词 Nickel-base SINGLE-CRYSTAL superalloy Initial yield strength tension compression asymmetry Micro/mechanical model
原文传递
Experimental study and creep constitutive modeling for 2219 aluminum alloy under tension and compression conditions
2
作者 LI Shuang-bo MAO Xiao-bo +3 位作者 ZHAN Li-hua YANG You-liang LIU Chun-hui ZENG Quan-qing 《Journal of Central South University》 2025年第11期4196-4209,共14页
The creep deformation and mechanical properties of 2219 aluminum alloy were experimentally investigated under both tension and compression at the temperature of 165℃for different time.The results indicated that the c... The creep deformation and mechanical properties of 2219 aluminum alloy were experimentally investigated under both tension and compression at the temperature of 165℃for different time.The results indicated that the creep deformation under tensile stress was greater than that under compressive stress.As the stress level increases,the compressive creep rate showed more significant increase.The yield strength after compressive stress creep-ageing was higher than that after stress-free ageing,with the lowest strength observed in the tensile-aged sample.Overall,the average phase length after compressive stress creep-ageing was larger than after tensile stress ageing.Under tensile stress,the number and size of precipitates at small angles to the stress direction were larger than those perpendicular to the stress direction.In contrast,under compressive stress,this relationship was reversed,and the preferential orientation of phases became more pronounced with ageing time.A unified,physics-based creep-ageing constitutive model,accounting for the orientation of precipitation,was developed for both tensile and compressive stress conditions.The predicted results were in good agreement with the experimental data.These findings,along with the developed model,provide a theoretical and simulation basis for precise creep-ageing forming of components under complex stresses. 展开更多
关键词 2219 aluminum alloy creep ageing tension compression mechanical properties constitutive modeling
在线阅读 下载PDF
Tension and compression creep aging asymmetry of a pre-treated Al-Zn-Mg-Cu alloy
3
作者 LAO Shan-feng XU Ke-ren +6 位作者 WANG Tao ZHAN Li-hua XU Yong-qian HUANG Ming-hui MA Bo-lin YANG You-liang GUO Wen-xing 《Journal of Central South University》 2025年第1期1-20,共20页
The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase... The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components. 展开更多
关键词 Al-Zn-Mg-Cu alloy mechanical properties creep ageing tension and compression asymmetry dislocation density
在线阅读 下载PDF
A Bionic Approach for Topology Optimization for Tension-only or Compression-only Design 被引量:1
4
作者 Kun Cai,Jiao ShiCollege of Water Resources and Architectural Engineering,Northwest A&F University,Xianyang 712100,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第4期397-404,共8页
A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology... A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology optimization of thestructure is high due to material nonlinearity.To improve the efficiency of optimization,the reference-interval with material-replacement method is presented.In the method,firstly,the optimization process of a structure is considered as bone remodellingprocess under the same loading conditions.A reference interval of Strain Energy Density (SED),corresponding to thedead zone or lazy zone in bone mechanics,is adopted to control the update of the design variables.Secondly,a material-replacement scheme is used to simplify the Finite Element Analysis (FEA) of structure in optimization.In the operation ofmaterial-replacement,the original tension-only or compression-only material in design domain is replaced with a new isotropicmaterial and the Effective Strain Energy Density (ESED) of each element can be obtained.Finally,the update of design variablesis determined by comparing the local ESED and the current reference interval of SED,e.g.,the increment of a relativedensity is nonzero if the local ESED is out of the current reference interval.Numerical results validate the method. 展开更多
关键词 nature inspired topology optimization tension/compression-only material reference-interval material-replacement
在线阅读 下载PDF
A New Elasticity and Finite Element Formulation for Different Young's Modulus When Tension and Compression Loadings 被引量:12
5
作者 YEZhi-ming YuHuan-ran 《Journal of Shanghai University(English Edition)》 CAS 2001年第2期89-92,共4页
This paper presents a new elasticity and finite element formulation for different Young's modulus when tension and compression loadings in anisotropy media. The case studies, such as anisotropy and isotropy, were ... This paper presents a new elasticity and finite element formulation for different Young's modulus when tension and compression loadings in anisotropy media. The case studies, such as anisotropy and isotropy, were investigated. A numerical example was shown to find out the changes of neutral axis at the pure bending beams. 展开更多
关键词 elastic media anisotropy media different Young's modulus tension compression finite element formulation
在线阅读 下载PDF
Analysis of factors affecting diagonal tension and compression capacity of corner joints in furniture frames fabricated with dovetail key 被引量:2
6
作者 Mosayeb Dalvand Ghanbar Ebrahimi +1 位作者 Akbar Rostampour Haftkhani Sadegh Maleki 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期155-168,共14页
This study was conducted to analyze the effect of joint type, and numbers and types of dovetail keys on diagonal tension and compression performance of corner joints in a furniture frame. Joint members were cut from w... This study was conducted to analyze the effect of joint type, and numbers and types of dovetail keys on diagonal tension and compression performance of corner joints in a furniture frame. Joint members were cut from white fir lumber. Butted and mitered joints were constructed with one and two dovetail key(s) with butterfly and H shapes. Joints were glued by polyvinyl acetate (PVAc) and cynoacrylate (CA). Compression capacity of joints was higher than diagonal tension. Mitered joints were stronger than butted ones. Butterfly dovetail keys were superior to H shape keys. Double keys performed better than single key. Experimental joints glued with PVAc were stronger than those glued with CA glue and control specimens. In terms of strength, butterfly dovetailed joints were comparable with doweled joints. 展开更多
关键词 diagonal tension diagonal compression dovetail key JOINTS LUMBER
在线阅读 下载PDF
Unified analytical stressstrain curve for quasibrittle geomaterial in uniaxial tension, direct shear and uniaxial compression 被引量:5
7
作者 王学滨 《Journal of Central South University of Technology》 EI 2006年第1期99-104,共6页
Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tens... Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tension, direct shear and uniaxial compression were presented, respectively. The three derived stressstrain curves were generalized as a unified formula. Beyond the onset of strain localization, a linear strain-softening constitutive relation for localized band was assigned. The size of the band was controlled by internal or characteristic length according to gradient-dependent plasticity. Elastic strain within the entire specimen was assumed to be uniform and decreased with the increase of plastic strain in localized band. Total strain of the specimen was decomposed into elastic and plastic parts. Plastic strain of the specimen was the average value of plastic strains in localized band over the entire specimen. For different heights, the predicted softening branches of the relative stressstrain curves in uniaxial compression are consistent with the previously experimental results for normal concrete specimens. The present expressions for the post-peak stressdeformation curves in uniaxial tension and direct shear agree with the previously numerical results based on gradient-dependent plasticity. 展开更多
关键词 stress- strain curve uniaxial tension uniaxial compression direct shear shear band ROCK CONCRETE
在线阅读 下载PDF
A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension–Compression yield asymmetry and strain hardening behavior of a Magnesium–Silver–Rare Earth alloy 被引量:9
8
作者 Sourav Mishra F.Khan S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2546-2562,共17页
Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying... Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio. 展开更多
关键词 Magnesium silver rare earth alloy Friction stir processing Ultrafine-grained microstructure tension to compression yield strength asymmetry Crystallographic texture Strain hardening Kock mecking plots Visco plastic self consistency
在线阅读 下载PDF
Expansion of spherical cavity of strain-softening materials with different elastic moduli of tension and compression 被引量:2
9
作者 LUO Zhan-you ZHU Xiang-rong GONG Xiao-nan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1380-1387,共8页
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account... An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result. 展开更多
关键词 Expansion of spherical cavity Tresca material Mohr-Coulomb material Elastic theory with different moduli of tension and compression Stress-dropping softening model
在线阅读 下载PDF
Intrinsic Strength Asymmetry Between Tension and Compression of Perfect Face-Centered-Cubic Crystals 被引量:1
10
作者 R.F.Wang J.Xu +2 位作者 R.T.Qu Z.Q.Liu Z.F.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第8期755-762,共8页
The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al... The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al and Ir)through calculating the ideal tensile and compressive strength with considering the normal stress effect and the competition between different crystallographic planes.The results show that both the intrinsic factors(the ideal shear strength and cleavage strength of low-index planes)and the orientation could affect the strength asymmetry,which may provide insights into understanding the strength of ultra-strong materials. 展开更多
关键词 Perfect crystal Strength asymmetry tension compression
原文传递
Effect of lower leg compression during cesarean section on post-spinal hypotension and neonatal hemodynamic parameters: nonrandomized controlled clinical trial 被引量:4
11
作者 Wafaa Taha Ebrahim Elgzar Hanan Ebrahim Said Heba Abdelfatah Ebrahim 《International Journal of Nursing Sciences》 CSCD 2019年第3期252-258,共7页
Objectives: This study aimed to determine the effect of lower leg compression during cesarean section (CS) on post-spinal hypotension (PSH) and neonatal hemodynamic parameters.Methods: This study is a nonrandomized co... Objectives: This study aimed to determine the effect of lower leg compression during cesarean section (CS) on post-spinal hypotension (PSH) and neonatal hemodynamic parameters.Methods: This study is a nonrandomized controlled clinical trial conducted in the cesarean delivery unit of the National Medical institute,Damanhour,Egypt.The sample included 120 parturients (60 intervention and 60 control).The researchers developed three tools for data collection: sociodemographic data and reproductive history interview schedule,electronic monitoring of maternal hemodynamic parameters,and neonatal hemodynamic assessment sheet.All parturients received ordinary preoperative care.For the intervention group,a long elastic stocking (ordinary pressure 20-30 mmHg,1 mmHg =0.133 kPa) was applied on both legs during cesarean section.The control group received the same care without the elastic stocking.Results: Systolic blood pressure,diastolic blood pressure,and mean arterial blood pressure were significantly higher in the intervention group throughout the entire operation period except in the last 5 -15 min.Heart rate was significantly lower in the intervention group.Only 13.3% of the intervention group took ephedrine compared with 45% of the control group.Apgar score was higher among neonates of intervention group compared with the control group at 1 min.Neonatal acidosis was significantly higher in the control group than in the contral group.Conclusion: Lower leg compression technique can effectively reduce PSH and neonatal acidosis. 展开更多
关键词 Cesarean section HEMODYNAMICS HYPOtension LEG NEONATAL Stockings compression
暂未订购
Progressive failure of frozen sodium sulfate saline sandy soil under uniaxial compression 被引量:1
12
作者 Dongyong Wang Bo Shao +2 位作者 Jilin Qi Wenyu Cui Liyun Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4646-4656,共11页
The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics ... The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content. 展开更多
关键词 Frozen sodium sulfate saline sandy soil Uniaxial compression test Digital image correlation Progressive failure Brittleness index
在线阅读 下载PDF
Compression of Left Main Coronary Artery in Patients with Pulmonary Artery Aneurysm and Pulmonary Hypertension 被引量:1
13
作者 Diana Isabel Katekaru-Tokeshi , Zoila Ivonne Rodríguez-Urteaga +1 位作者 Moises Jimenez-Santos Nilda Espinola-Zavaleta 《World Journal of Cardiovascular Diseases》 2019年第9期649-656,共8页
Background: Pulmonary artery aneurysm (PAA) is an unusual finding and its association with left main coronary (LMCA) compression is even more infrequent. Cardiac CT evaluates of presence and size of PAA and the degree... Background: Pulmonary artery aneurysm (PAA) is an unusual finding and its association with left main coronary (LMCA) compression is even more infrequent. Cardiac CT evaluates of presence and size of PAA and the degree of LMCA compression. The aim of this study is to describe two cases of adults with compression of LMCA with PAA associated with PDA and pulmonary hypertension. Case presentation: The first case is a 27-year-old man with PAA (78 mm diameter) and LMCA compression of 70% between the aortic sinus and the PAA. He presented angina as a manifestation of the LMCA compression. During follow-up the patient died. The second case is a 28-year-old man with PAA (110 mm diameter) that compresses LMCA in 55%, he rejected surgical treatment, but he is in close follow-up with medical treatment. Conclusion: Cardiac computed tomography played an important role both in the diagnosis and identification of high-risk PAA patients. 展开更多
关键词 LEFT Main CORONARY ARTERY compression PULMONARY ARTERY ANEURYSM PATENT Ductus Arteriosus PULMONARY Hypertension
暂未订购
Effect of Auricular Piont Pressing Combined with Thunder-Fire Moxibustion on Abdominal Distension and Constipation After Thoracic Compression Fracture 被引量:5
14
作者 Xue-Jian ZHANG Ling TANG +4 位作者 Jing ZHANG Li-Li DING Si-Ting LIU Ya-Li XIAO Yue TANG 《Journal of Integrative Nursing》 2019年第2期86-91,共6页
Objective:To explore the effect of auricular point pressing combined with thunder-fire moxibustion in the treatment of abdominal distension and constipation after thoracic compression fracture.Methods:Totally 100 pati... Objective:To explore the effect of auricular point pressing combined with thunder-fire moxibustion in the treatment of abdominal distension and constipation after thoracic compression fracture.Methods:Totally 100 patients were randomly divided into 4 groups,the observation group 1(n=25)which were treated with conventional nursing combined with auricular piont pressing,observation group 2(n=25)treated with conventional nursing combined with thunder-fire moxibustion,observation group 3(n=25)treated with conventional nursing combined with auricular point pressing and thunder-fire moxibustion,and the control group(n=25)which adopted conventional nursing.First exhaust and defecation time after fracture in 4 groups were observed and compared.Results:The effect of observation group 3 was better than that of observation group 2,observation group 1 and control group(P<0.05).Conclusion:It is obvious that auricular point pressing combined with thunder-fire moxibustion has better result in treating abdominal distension and constipation after thoracic compression fracture. 展开更多
关键词 Thunder-fire moxibustion Auricular piont pressing Abdominal distension CONSTIPATION Thoracic compression fracture
暂未订购
Effect of Current Density and Strain Rate on Deformation Resistance During Electrically-Assisted Compression of AlCr_(1.3)TiNi_(2) Eutectic High-Entropy Alloys
15
作者 Wang Fanghui Li Hushan +6 位作者 Zhang Hao Ding Ziheng Bao Jianxing Ding Chaogang Shan Debin Guo Bin Xu Jie 《稀有金属材料与工程》 北大核心 2025年第5期1121-1126,共6页
The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at c... The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density. 展开更多
关键词 eutectic high-entropy alloy electrically-assisted compression deformation resistance flow stress
原文传递
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
16
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
在线阅读 下载PDF
Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading 被引量:1
17
作者 宋玉普 曹伟 孟宪宏 《Journal of Shanghai University(English Edition)》 CAS 2005年第2期127-133,共7页
Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st... Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures. 展开更多
关键词 CONCRETE triaxial constant-amplitude tension-compression cyclic loading fati gue strength fatigue life.
在线阅读 下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
18
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tensioncompression asymmetry atomistic simulations
原文传递
Effect of Temperature on Interface Microstructure and Mechanical Properties of AZ31/Al/Ta Composites Prepared by Vacuum Hot Compression Bonding
19
作者 Yu Zhilei Li Jingli +2 位作者 Han Xiuzhu Li Bairui Xue Zhiyong 《稀有金属材料与工程》 北大核心 2025年第11期2749-2756,共8页
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the... AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength. 展开更多
关键词 AZ31/Al/Ta composites microstructure mechanical properties vacuum hot compression bonding
原文传递
PSC Bridge Subjected to Combined Post Tension and Post Compression—A Case Study
20
作者 Sujith Shetty Sundar Suraj Sathyanrayana Rao 《World Journal of Engineering and Technology》 2018年第4期767-779,共13页
Starting from the ideas of Conventional Post Tensioning we present a heuristic argument of advantages of combined actions of post compression along with post tensioned technique for a PSC member through a Design Examp... Starting from the ideas of Conventional Post Tensioning we present a heuristic argument of advantages of combined actions of post compression along with post tensioned technique for a PSC member through a Design Example. Our aim was to assess the characterization of a pre stressed member if it was?to be under the Load effects of post compressing a bar with post tensioned method through hydraulic jacks as the reinforcements in the tensioned zone of conventional PSC bridge were to be compressed in order to induce internal tensile stress similar to internal compressive stresses developed due to conventional post tensioned design. The results ultimately concluded that post compressing a Slender bar by a pre stressing force in the compression zone by a value equal to 0.1?-?0.7 times the pre stressing force in the tension zone would eventually lead to cancelling out of tensile and compressive stresses, thereby forming the desired section which is comparatively smaller in size but can account for sustainability. The anchorage at the top end was?provided by special slender steel rods to eliminate the compressive stresses. All the dead loads?were?counteracted by the action of prestress and the bridge section was able to carry only live load which is deduced through examples in the article. 展开更多
关键词 COMBINED POST tension and POST compression PRESTRESS Concrete Design of BRIDGES
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部