期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Modelling infrastructure interdependencies and cascading effects using temporal networks
1
作者 Gian Paolo Cimellaro Alessandro Cardoni Andrei Reinhorn 《Resilient Cities and Structures》 2024年第3期28-42,共15页
Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdepende... Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results. 展开更多
关键词 Interdependent infrastructure Nuclear power plant Cascading effects temporal networks Input-output methods
在线阅读 下载PDF
A Spatial-Temporal Network Perspective for the Propagation Dynamics of Air Traffic Delays 被引量:16
2
作者 Qing Cai Sameer Alam Vu N.Duong 《Engineering》 SCIE EI 2021年第4期452-464,共13页
Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni... Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays. 展开更多
关键词 Air traffic Transport systems Delay propagation dynamics Spatial–temporal networks
在线阅读 下载PDF
Shortest path of temporal networks:An information spreading-based approach
3
作者 Yixin Ma Xiaoyu Xue +1 位作者 Meng Cai Wei Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期590-596,共7页
The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.I... The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.In this paper,we propose an information spreading-based method to calculate the shortest paths distribution in temporal networks.We verify our method on both artificial and real-world temporal networks and obtain a good agreement.We further generalize our method to identify influential nodes and found an effective method.Finally,we verify the influential nodes identifying method on four networks. 展开更多
关键词 temporal network shortest path information spreading
原文传递
Evolutionary role of startups and its relevance to the success in the blockchain field based on temporal information networks
4
作者 Ying Wang Qing Guan 《Chinese Physics B》 2025年第8期343-356,共14页
Startups form an information network that reflects their growth trajectories through information flow channels established by shared investors.However,traditional static network metrics overlook temporal dynamics and ... Startups form an information network that reflects their growth trajectories through information flow channels established by shared investors.However,traditional static network metrics overlook temporal dynamics and rely on single indicators to assess startups’roles in predicting future success,failing to comprehensively capture topological variations and structural diversity.To address these limitations,we construct a temporal information network using 14547 investment records from 1013 global blockchain startups between 2004 and 2020,sourced from Crunchbase.We propose two dynamic methods to characterize the information flow:temporal random walk(sTRW)for modeling information flow trajectories and temporal betweenness centrality(tTBET)for identifying key information hubs.These methods enhance walk coverage while ensuring random stability,allowing for more effective identification of influential startups.By integrating sTRW and tTBET,we develop a comprehensive metric to evaluate a startup’s influence within the network.In experiments assessing startups’potential for future success—where successful startups are defined as those that have undergone M&A or IPO—incorporating this metric improves accuracy,recall,and F1 score by 0.035,0.035,and 0.042,respectively.Our findings indicate that information flow from key startups to others diminishes as the network distance increases.Additionally,successful startups generally exhibit higher information inflows than outflows,suggesting that actively seeking investment-related information contributes to startup growth.Our research provides valuable insights for formulating startup development strategies and offers practical guidance for market regulators. 展开更多
关键词 STARTUP temporal networks information flow network analysis startup success prediction
原文传递
Assessing the effectiveness of test-trace-isolate interventions using a multi-layered temporal network
5
作者 Yunyi Cai Weiyi Wang +7 位作者 Lanlan Yu Ruixiao Wang Gui-Quan Sun Allisandra G.Kummer Paulo C.Ventura Jiancheng Lv Marco Ajelli Quan-Hui Liu 《Infectious Disease Modelling》 2025年第3期775-786,共12页
In the early stage of an infectious disease outbreak,public health strategies tend to gravitate towards non-pharmaceutical interventions(NPIs)given the time required to develop targeted treatments and vaccines.One of ... In the early stage of an infectious disease outbreak,public health strategies tend to gravitate towards non-pharmaceutical interventions(NPIs)given the time required to develop targeted treatments and vaccines.One of the most common NPIs is Test-Trace-Isolate(TTI).One of the factors determining the effectiveness of TTI is the ability to identify contacts of infected individuals.In this study,we propose a multi-layer temporal contact network to model transmission dynamics and assess the impact of different TTI implementations,using SARS-CoV-2 as a case study.The model was used to evaluate TTI effectiveness both in containing an outbreak and mitigating the impact of an epidemic.We estimated that a TTI strategy based on home isolation and testing of both primary and secondary contacts can contain outbreaks only when the reproduction number is up to 1.3,at which the epidemic prevention potential is 88.2%(95%CI:87.9%e88.5%).On the other hand,for higher value of the reproduction number,TTI is estimated to noticeably mitigate disease burden but at high social costs(e.g.,over a month in isolation/quarantine per person for reproduction numbers of 1.7 or higher).We estimated that strategies considering quarantine of contacts have a larger epidemic prevention potential than strategies that either avoid tracing contacts or require contacts to be tested before isolation.Combining TTI with other social distancing measures can improve the likelihood of successfully containing an outbreak but the estimated epidemic prevention potential remains lower than 50%for reproduction numbers higher than 2.1.In conclusion,our model-based evaluation highlights the challenges of relying on TTIs to contain an outbreak of a novel pathogen with characteristics similar to SARS-CoV-2,and that the estimated effectiveness of TTI depends on the way contact patterns are modeled,supporting the relevance of obtaining comprehensive data on human social interactions to improve preparedness. 展开更多
关键词 Test-trace-isolate Multi-layer temporal network Epidemic modeling Non-pharmaceutical interventions
原文传递
Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks
6
作者 LU Pengli YANG Peishi LIAO Yonggang 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期510-520,共11页
Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive atte... Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive attention from researchers.Many centrality methods and machine learning algorithms have been proposed to predict essential proteins.Nevertheless,the topological characteristics learned by the centrality method are not comprehensive enough,resulting in low accuracy.In addition,machine learning algorithms need sufficient prior knowledge to select features,and the ability to solve imbalanced classification problems needs to be further strengthened.These two factors greatly affect the performance of predicting essential proteins.In this paper,we propose a deep learning framework based on temporal convolutional networks to predict essential proteins by integrating gene expression data and protein-protein interaction(PPI)network.We make use of the method of network embedding to automatically learn more abundant features of proteins in the PPI network.For gene expression data,we treat it as sequence data,and use temporal convolutional networks to extract sequence features.Finally,the two types of features are integrated and put into the multi-layer neural network to complete the final classification task.The performance of our method is evaluated by comparing with seven centrality methods,six machine learning algorithms,and two deep learning models.The results of the experiment show that our method is more effective than the comparison methods for predicting essential proteins. 展开更多
关键词 temporal convolutional networks node2vec protein-protein interaction(PPI)network essential proteins gene expression data
原文传递
Clustering-based temporal deep neural network denoising method for event-based sensors
7
作者 LI Jianing XU Jiangtao GAO Jiandong 《Optoelectronics Letters》 2025年第7期441-448,共8页
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu... To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors. 展开更多
关键词 cluster centers denoising kmeans cluster centersa temporal deep neural network CLUSTERING event based sensors dbscan
原文传递
Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network
8
作者 Wanzhi MENG Zhuorui PAN +2 位作者 Sixin WEN Pan QIN Ximing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期106-117,共12页
Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust esti... Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance. 展开更多
关键词 Thrust estimation temporal convolutional network Embedded deployment Hardware-in-the-loop testing Ignition verification
原文传递
TSCND:Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting
9
作者 Haoran Huang Weiting Chen Zheming Fan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3665-3681,共17页
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t... Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN. 展开更多
关键词 DIFFERENCE data prediction time series temporal convolutional network dilated convolution
在线阅读 下载PDF
Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
10
作者 ZHANG Hong GONG Lei +2 位作者 ZHAO Tianxin ZHANG Xijun WANG Hongyan 《High Technology Letters》 EI CAS 2024年第4期370-379,共10页
Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial... Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy. 展开更多
关键词 traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(TCN) attention mechanism(AM)
在线阅读 下载PDF
Enhancing Healthcare Data Privacy in Cloud IoT Networks Using Anomaly Detection and Optimization with Explainable AI (ExAI)
11
作者 Jitendra Kumar Samriya Virendra Singh +4 位作者 Gourav Bathla Meena Malik Varsha Arya Wadee Alhalabi Brij B.Gupta 《Computers, Materials & Continua》 2025年第8期3893-3910,共18页
The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated cha... The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated challenges,such as data security,interoperability,and ethical concerns,is crucial to realizing the full potential of IoT in healthcare.Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems.In this context,this paper presents a novelmethod for healthcare data privacy analysis.The technique is based on the identification of anomalies in cloud-based Internet of Things(IoT)networks,and it is optimized using explainable artificial intelligence.For anomaly detection,the Radial Boltzmann Gaussian Temporal Fuzzy Network(RBGTFN)is used in the process of doing information privacy analysis for healthcare data.Remora Colony SwarmOptimization is then used to carry out the optimization of the network.The performance of the model in identifying anomalies across a variety of healthcare data is evaluated by an experimental study.This evaluation suggested that themodel measures the accuracy,precision,latency,Quality of Service(QoS),and scalability of themodel.A remarkable 95%precision,93%latency,89%quality of service,98%detection accuracy,and 96%scalability were obtained by the suggested model,as shown by the subsequent findings. 展开更多
关键词 Healthcare data privacy analysis anomaly detection cloud IoT network explainable artificial intelligence temporal fuzzy network
在线阅读 下载PDF
Discovering Association Rules with Graph Patterns in Temporal Networks 被引量:1
12
作者 Chu Huang Qianzhen Zhang +2 位作者 Deke Guo Xiang Zhao Xi Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第2期344-359,共16页
Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal... Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal graph association rules(TGARs)that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints.We introduce quality measures(e.g.,support,confidence,and diversification)to characterize meaningful TGARs that are useful and diversified.In addition,the proposed support metric is an upper bound for alternative metrics,allowing us to guarantee a superset of patterns.We extend conventional confidence measures in terms of maximal occurrences of TGARs.The diversification score strikes a balance between interestingness and diversity.Although the problem is NP-hard,we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph.We propose pruning strategies to filter TGARs that have low support or cannot make top-k as early as possible.Moreover,we design an auxiliary data structure to prune the TGARs that do not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for each extension in the search space.We experimentally verify the effectiveness,efficiency,and scalability of our algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications. 展开更多
关键词 temporal networks graph association rule subgraph pattern matching graph mining big graphs
原文传递
Spatiotemporal Input Control:Leveraging Temporal Variation in Network Dynamics
13
作者 Yihan Lin Jiawei Sun +4 位作者 Guoqi Li Gaoxi Xiao Changyun Wen Lei Deng H.Eugene Stanley 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期635-651,共17页
The number of available control sources is a limiting factor to many network control tasks.A lack of input sources can result in compromised controllability and/or sub-optimal network performance,as noted in engineeri... The number of available control sources is a limiting factor to many network control tasks.A lack of input sources can result in compromised controllability and/or sub-optimal network performance,as noted in engineering applications such as the smart grids.The mechanism can be explained by a linear timeinvariant model,where structural controllability sets a lower bound on the number of required sources.Inspired by the ubiquity of time-varying topologies in the real world,we propose the strategy of spatiotemporal input control to overcome the source-related limit by exploiting temporal variation of the network topology.We theoretically prove that under this regime,the required number of sources can always be reduced to 2.It is further shown that the cost of control depends on two hyperparameters,the numbers of sources and intervals,in a trade-off fashion.As a demonstration,we achieve controllability over a complex network resembling the nervous system of Caenorhabditis elegans using as few as 6%of the sources predicted by a static control model.This example underlines the potential of utilizing topological variation in complex network control problems. 展开更多
关键词 Complex network complex system control theory complex system optimization temporal network time-varying system
在线阅读 下载PDF
I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks
14
作者 Yuan Li Jie Dai +2 位作者 Xiao-Lin Fan Yu-Hai Zhao Guo-Ren Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第6期1337-1355,共19页
Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates its cohesiveness at the fastest rate,is an important probl... Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates its cohesiveness at the fastest rate,is an important problem in temporal networks.The BCS has a large number of applications,such as representing emergency events in social media,traffic congestion in road networks and epidemic outbreak in communities.Nevertheless,existing methods demand the BCS lasting for a time interval,which neglects the timeliness of the BCS.In this paper,we design an early bursting cohesive subgraph(EBCS)model based on the k-core to enable identifying the burstiness as soon as possible.To find the EBCS,we first construct a time weight graph(TWG)to measure the bursting level by integrating the topological and temporal information.Then,we propose a global search algorithm,called GS-EBCS,which can find the exact EBCS by iteratively removing nodes from the TWG.Further,we propose a local search algorithm,named LS-EBCS,to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity.Subsequently,considering the situation that the massive temporal networks cannot be completely put into the memory,we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms,namely I/O-GS and I/O-LS respectively,to find the EBCS under the semi-external model.Extensive experiments,conducted on four real temporal networks,demonstrate the efficiency and effectiveness of our proposed algorithms.For example,on the DBLP dataset,I/O-LS and LS-EBCS have comparable running time,while the maximum memory usage of I/O-LS is only 6.5 MB,which is much smaller than that of LS-EBCS taking 308.7 MB. 展开更多
关键词 early bursting cohesive subgraph(EBCS) I/O efficient algorithm semi-external model temporal network
原文传递
Citation and bibliographic coupling between authors in the field of social network analysis
15
作者 Daria Maltseva Vladimir Batagelj 《Journal of Data and Information Science》 CSCD 2024年第4期110-154,共45页
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t... Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time. 展开更多
关键词 Development of scientific fields Social network analysis Bibliographic network temporal network CITATION Bibliographic coupling
在线阅读 下载PDF
Spectrum Sensing via Temporal Convolutional Network 被引量:8
16
作者 Tao Ni Xiaojin Ding +3 位作者 Yunfeng Wang Jun Shen Lifeng Jiang Gengxin Zhang 《China Communications》 SCIE CSCD 2021年第9期37-47,共11页
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain... In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity. 展开更多
关键词 cognitive radio spectrum sensing deep learning temporal convolutional network satellite communication
在线阅读 下载PDF
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model 被引量:4
17
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
在线阅读 下载PDF
An Influence Maximization Algorithm Based on Improved K-Shell in Temporal Social Networks 被引量:2
18
作者 Wenlong Zhu Yu Miao +2 位作者 Shuangshuang Yang Zuozheng Lian Lianhe Cui 《Computers, Materials & Continua》 SCIE EI 2023年第5期3111-3131,共21页
Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT ... Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms. 展开更多
关键词 temporal social network influence maximization improved K-shell comprehensive degree
在线阅读 下载PDF
Training-based symbol detection with temporal convolutional neural network in single-polarized optical communication system 被引量:1
19
作者 Yingzhe Luo Jianhao Hu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期920-930,共11页
In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M... In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver. 展开更多
关键词 Deep learning Optical communications Symbol detection temporal convolutional network
在线阅读 下载PDF
A Lightweight Temporal Convolutional Network for Human Motion Prediction 被引量:1
20
作者 WANG You QIAO Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期150-157,共8页
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain... A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction. 展开更多
关键词 human motion prediction temporal convolutional network short-term prediction long-term prediction deep neural network
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部