期刊文献+
共找到13,270篇文章
< 1 2 250 >
每页显示 20 50 100
Use of Dopants for Thoria Sintering TemperatureReduction-Characterization of TH02
1
作者 Hidetoshi Takiishi Luis A. Genova +3 位作者 Elton D. Cavalheira Marycel B. Cotrim Wilson Santos Paulo E. O.Lainetti 《Journal of Energy and Power Engineering》 2016年第12期740-745,共6页
Thorium is nearly three times more abundant than uranium in the Earth's crust. Some papers evaluate the thorium resourcesin Brazil over 1,200,000 metric t. These figures mean that the country is probably the biggest ... Thorium is nearly three times more abundant than uranium in the Earth's crust. Some papers evaluate the thorium resourcesin Brazil over 1,200,000 metric t. These figures mean that the country is probably the biggest thorium resource in the world, with onlypart of the territory prospected. Nevertheless, Brazil has not a research program for use of thorium in nuclear reactors, even havingdedicated special attention to the subject in the beginning of its nuclear activities, in the fifties and sixties. From 1985 until 2003 IPENoperated a pilot plant for thorium nitrate production and purification, used by Brazilian industry for production of gas mantles. Thisfacility produced over 170 metric t of thorium nitrate. Despite the non-nuclear application, the pilot plant was unique in the southernhemisphere. On the other hand, Brazil has the biggest world niobium resources. The Brazilian thorium and niobium resources added tothe predictable future importance of alternative fissile materials have motivated this research, since uranium is a finite resource if usedin the present thermal nuclear reactors. Besides this, thorium oxide is an important nuclear reactor material. It is a refractory oxide andits ceramic fabrication process involves a very high temperature sintering treatment considering that thoria melting point is very high(3,650 K). Cations of elements of the group VB (V, Nb and Ta) have a known effect in the reduction of thoria sintering temperature.IPEN has initiated an investigation about the use of niobium as a dopant for thoria sintering temperature reduction. The thoria used inthe research was produced in the IPEN's pilot plant and different amounts of niobium oxide (Nb2Os) will be added to thoria by differentroutes. The powders will be compressed and the compacted pellets will be sintered at different temperatures. The influence of thedifferent parameters in the density of sintered pellets is being investigated. This paper presents the chemical and physicalcharacterization for the thoria used in the investigation. 展开更多
关键词 Thorium processing purification thoria dopants sintering temperature reduction.
在线阅读 下载PDF
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
2
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Hydrogenation and Doping Induced One-Dimensional High-Temperature Superconductivity in carbon Nanotube
3
作者 Hao Wang Bao-Tong Liu +5 位作者 Shu-Xiang Qiao Na Jiao Guili Yu Ping Zhang C.S.Ting Hong-Yan Lu 《Chinese Physics Letters》 2026年第1期198-210,共13页
In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperat... In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices. 展开更多
关键词 high temperature superconductivity DOPING critical temperature dirac semimetal one dimensional materials HYDROGENATION full hydrogenationinterestinglyby hole dopingit
原文传递
Conceptual design of the subcritical assemblies based on the PWR conventional fuel using DRAGON and DONJON codes
4
作者 S.Abedi S.Z.Kalantari +2 位作者 J.Mokhtari M.H.Choopan Dastjerdi A.Asgari 《Nuclear Science and Techniques》 2026年第1期283-296,共14页
Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety... Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety.The objective of this study is to design a subcritical reactor using a pressurized water reactor(PWR)conventional fuel following two safety points.In the first approach,deeply placed SCR cores with an infinite multiplication factor(k_(∞))of less than unity were identified using the DRAGON lattice code.In the second approach,subcritical reactor cores with an effective multiplication factor(k_(eff))of less than unity were determined by coupling the cell calculations of the DRAGON lattice code and core calculations of the DONJON code.For the deeply subcritical reactor design,it was found that the reactor would remain inherently subcritical while using fuel rods with ^(235)U enrichment of up to 0.9%,regardless of the pitch of the fuel rods.In the second approach,the optimal pitches(1.3 to 2.3 cm)were determined for different fuel enrichment values from 1 to 5%.Subsequently,the k_(eff) was obtained for a fuel rod arrangement of 8×8 to 80×80,and the states in which the reactor would be subcritical were determined for different fuel enrichments at the corresponding optimal pitch.To validate the models used in the DRAGON and DONJON codes,the k_(eff) of the Isfahan Light Water Subcritical Reactor(LWSCR)was experimentally measured and compared with the results of the calculations.Finally,the effects of fuel and moderator temperature changes were investigated to ensure that the designed assemblies remained in the subcritical state at all operational temperatures. 展开更多
关键词 Subcritical reactor design Multiplication factor Light water subcritical reactor(LWSCR) Moderator temperature coefficient(MTC) Fuel temperature coefficient(FTC)
在线阅读 下载PDF
Impact of temperature on the biogenic volatile organic compound(BVOC)emissions in China:A review
5
作者 Yiming Yang Fengbin Sun +8 位作者 Yusheng Chen Shiyue Yang Yuan Dai Yiming Qin Ning Zhang Zhifeng Shu Han Yan Xinlei Ge Junfeng Wang 《Journal of Environmental Sciences》 2026年第1期649-660,共12页
Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the back... Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the backdrop of global warming,plants emit more BVOCs to cope with thermal stress,leading to elevated concen-trations of tropospheric ozone(O_(3))and secondary organic aerosols(SOA).In recent years,a considerable body of research has explored the interaction between tree species and BVOCs under the influence of various environ-mental factors.Although many studies have examined explored the temperature dependence of BVOC emissions in the past,few studies have conducted a comprehensive and in-depth investigation into the impacts of tempera-ture.This review summarizes the relevant studies on BVOCs in the past decade,including the main biosynthetic pathways,emission observation techniques and emission inventories,as well as how temperature affects isoprene and monoterpene emission rates and the formation of O_(3) and SOA.Our work offers a theoretical foundation and guidance for future efforts to advance the comprehension of BVOC emission characteristics and develop strategies to mitigate secondary pollution. 展开更多
关键词 TEMPERATURE Biogenic volatile organic compounds ISOPRENE OZONE Secondary organic aerosol
原文传递
Tensile failure mode transitions from subzero to elevated deformation temperature in Mg-6Al-1Zn alloy
6
作者 Hafiz Muhammad Rehan Tariq Umer Masood Chaudry +3 位作者 Jeong-Rim Lee Nooruddin Ansari Mansoor Ali Tea-Sung Jun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期242-251,共10页
Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under... Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure. 展开更多
关键词 Mg alloy deformation temperature twinning dynamics grain refinement dynamic recovery fracture mechanics
在线阅读 下载PDF
Detonation characteristics of the solid-liquid mixed fuel cloud of Al/B/MgH_(2)/DEE/IPN
7
作者 Zhangjun Wu Xianzhao Song +4 位作者 Shuxin Deng Bingbing Yu Yongxu Wang Rhoda Afriyie Mensah Suning Mei 《Defence Technology(防务技术)》 2026年第1期377-388,共12页
To elucidate the dispersion and explosion characteristics of multi-metal powder and liquid composite fuel formulations,high-energy metal powders(aluminum(Al),boron(B),and magnesium hydride(MgH_(2)))are incorporated in... To elucidate the dispersion and explosion characteristics of multi-metal powder and liquid composite fuel formulations,high-energy metal powders(aluminum(Al),boron(B),and magnesium hydride(MgH_(2)))are incorporated into a liquid fuel primarily composed of diethyl ether(DEE)and isopropyl nitrate(IPN).The explosion characteristics of different solid-liquid fuel-air-explosive(FAE)under unconfined conditions are investigated using a high-speed camera,infrared thermal imaging,and a pressure measurement system.Results demonstrate that high-energy metal powders significantly enhance detonation energy dissipation,with aluminum exhibiting the most pronounced effect.Fuel 5#(45.4 wt%DEE,9.2 wt%IPN,29.5 wt%Al,9.1 wt%B,6.8 wt%MgH_(2))exhibits superior explosion performance,achieving higher values of overpressure,impulse,and thermal radiation damage during the detonation stage compared to other fuels.However,Fuel 5#also displays faster decay rates,attributed to accelerated heat release rates induced by B and MgH_(2)powders.This study reveals that different metal powders in solid-liquid FAE exhibit distinct enhancements in explosion performance,providing critical insights for optimizing composite fuel design. 展开更多
关键词 Detonable aerosol OVERPRESSURE Shock wave Deflagration to detonation transition Temperature field
在线阅读 下载PDF
Mapping interaction between human activities and land surface temperature in the Yellow River Basin
8
作者 ZHANG Zhongwu BAI Xue +4 位作者 LI Zhe YUE Xin ZHANG Xin YANG Shuo WANG Lu 《Journal of Geographical Sciences》 2026年第1期79-106,共28页
Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively ... Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature. 展开更多
关键词 Yellow River Basin human activities land surface temperature maximal information coefficient XGBoost-SHAP
原文传递
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
9
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 Thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
10
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Electronically Conductive Metal−Organic Framework With Photoelectric and Photothermal Effect as a Stable Cathode for High-Temperature Photo-Assisted Zn/Sn-Air Battery
11
作者 Jiangchang Chen Chuntao Yang +2 位作者 Yao Dong Ya Han Yingjian 《Carbon Energy》 2026年第1期105-114,共10页
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro... Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis. 展开更多
关键词 electronically conductive MOFs high temperatures photo-assisted Zn/Sn-air batteries photoelectric effects photothermal effects
在线阅读 下载PDF
Study on response of AlphaGUARD PQ2000 radon monitor to^(220)Rn and its long‑lived progeny in diffusion mode
12
作者 Ke‑Xin Wang Zheng‑Zhong He +6 位作者 Ya‑Song Xiao Jia‑Lu Feng Yan‑Bing Lin Wen‑Jie Xu Li‑Dan Lv Yu‑Qi Xing Hui‑Min Yuan 《Nuclear Science and Techniques》 2026年第1期152-163,共12页
Owing to the inherent limitation of the internal pulse ionization chamber within the AlphaGUARD PQ2000 radon monitor,that is,its inability to discriminate the energy levels of α particles,the ingress of^(220)Rn from ... Owing to the inherent limitation of the internal pulse ionization chamber within the AlphaGUARD PQ2000 radon monitor,that is,its inability to discriminate the energy levels of α particles,the ingress of^(220)Rn from the surrounding environment,along with its decay progeny,poses a substantive challenge in accurately determining the^(222)Rn concentration in the measurement outcomes.Among these,the protracted influence primarily stems from the two enduring decay progenies,namely^(212)Pb with a half-life of 10.64 h and^(212)Bi with a half-life of 60.54 min.This study explored the influence of^(220)Rn progeny on the measurement results of an AlphaGUARD PQ2000 radon monitor by developing a theoretical calculation model.The response coefficient related to the residual^(220)Rn progeny within the AlphaGUARD PQ2000 radon monitor was experimentally validated.In addition,this study investigated the effects of temperature and wind speed on the sensitivity of the instrument to^(220)Rn gas.The research findings revealed commendable agreement between the experimentally measured response coefficients of the residual^(220)Rn progeny and the corresponding values derived from the theoretical model.Notably,both the response coefficients of the AlphaGUARD PQ2000 radon monitor to^(220)Rn gas and its internal residual^(220)Rn progeny increased with elevated temperatures and increased wind speeds,providing a reference for correcting the impact of^(220)Rn and its progeny on the measurement results of^(222)Rn concentration obtained using the AlphaGUARD PQ2000 radon monitor. 展开更多
关键词 ^(220)Rn progeny 222Rn AlphaGUARD PQ2000 Long-term decay Response coefficient ^(220)Rn gas Temperature effects Wind speed effects
在线阅读 下载PDF
聚多卡醇注射联合低温等离子射频消融治疗咽喉部复杂血管瘤的临床分析 被引量:1
13
作者 段勇 臧艳姿 +3 位作者 李靖 毛雨晨 史光许 王广科 《中国耳鼻咽喉头颈外科》 2025年第4期265-267,共3页
目的探讨聚多卡醇注射结合低温等离子消融联合治疗喉部复杂血管瘤的方法及疗效。方法采用支撑喉镜下Ⅰ期聚多卡醇注射+Ⅱ期低温等离子射频消融术微创切除。按照聚多卡醇与空气比1∶3的比例制成泡沫状硬化剂,依据瘤体大小,在瘤体边缘及... 目的探讨聚多卡醇注射结合低温等离子消融联合治疗喉部复杂血管瘤的方法及疗效。方法采用支撑喉镜下Ⅰ期聚多卡醇注射+Ⅱ期低温等离子射频消融术微创切除。按照聚多卡醇与空气比1∶3的比例制成泡沫状硬化剂,依据瘤体大小,在瘤体边缘及中心多点注射,可达4~6个注射点,进针深度约0.5~1.0 cm,约每点注射0.5~1.5 ml,表面黏膜由蓝色变为白色肿胀为止。注射2周后复查评估,Ⅱ期再行支撑喉镜下低温等离子射频消融治疗,根据病变部位前端适度弯曲,快速、彻底消融血管瘤。结果18例咽喉部血管瘤患者,4例术前行气管切开,5例患者术后转入AICU延迟次日拔管,泡沫硬化剂注射术后反应轻微、无呼吸困难、出血、过敏等严重并发症发生,术后仅有1例出现低热,轻度胃肠道反应1例。术后2周喉部血管瘤都有不同程度的缩小硬化,Ⅱ期低温等离子射频消融术后1周创面白色伪膜覆盖均匀,可观察到轻度水肿及充血。2周后复查,未见水肿情况。1个月后复查,伪膜基本脱落。随访2年,1例受试者术后10个月复发,再次予以手术治疗;2年后无复发病例。结论Ⅰ期聚多卡醇注射+Ⅱ期低温等离子射频消融术分期治疗喉部复杂血管瘤是一种微创、安全、疗效确切的治疗方法,术中出血少,术后恢复快,值得在临床推广。 展开更多
关键词 血管瘤(Hemangioma) 治疗结果(Treatment Outcome) 聚多卡醇泡沫硬化剂(polydocar tol foam sclerotherapy) 低温等离子(low temperature plasma)
暂未订购
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect 被引量:3
14
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
在线阅读 下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy 被引量:1
15
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
在线阅读 下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy 被引量:1
16
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
在线阅读 下载PDF
A critical review on oxidation behavior of Co-based superalloys 被引量:3
17
作者 Chenghao PEI Qingshuang MA +4 位作者 Qiuzhi GAO Yue YANG Yuhang DU Hailian ZHANG Huijun LI 《Chinese Journal of Aeronautics》 2025年第3期183-206,共24页
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present... The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures. 展开更多
关键词 COBALT SUPERALLOYS OXIDATION Alloying elements MICROSTRUCTURE Temperature
原文传递
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:4
18
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 Microwave absorbing materials Metacomposites Equivalent electromagnetic parameters Structural parameters Wide temperature spectrum
原文传递
CAS-ESM2.0 Dataset for the G1ext Experiment of the Geoengineering Model Intercomparison Project(GeoMIP) 被引量:2
19
作者 Min CUI Duoying JI +8 位作者 John CMOORE He ZHANG Jiangbo JIN Kece FEI Chenglai WU Jiawen ZHU Juanxiong HE Zhaoyang CHAI Dongling ZHANG 《Advances in Atmospheric Sciences》 2025年第3期579-592,共14页
Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom... Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies. 展开更多
关键词 CAS-ESM2.0 GeoMIP GEOENGINEERING radiative adjustment temperature PRECIPITATION
在线阅读 下载PDF
Mechanism of nano-scale zero-valent iron modified biochar for enhancing low-nitrogen anammox process resistance to low temperatures 被引量:2
20
作者 Wenjing Chen Lijin Zhang +3 位作者 Zirui Liu Wenru Liu Bin Lu Haitao Zhao 《Journal of Environmental Sciences》 2025年第6期442-452,共11页
Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancin... Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment. 展开更多
关键词 ANAMMOX nZVI@BC Low temperatures Community structure Functional gene
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部