期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic hysteresis brittle behavior and temperature-strain rate-coupled damage modeling:A multiscale study of poly(phthalazinone ether sulfone ketone)under extreme service conditions
1
作者 Liangliang Shen Shi Su +4 位作者 Wenhui Zhang Shilun Shi Xigao Jian Tianqi Zhu Jian Xu 《Defence Technology(防务技术)》 2025年第10期259-273,共15页
Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms und... Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials. 展开更多
关键词 PPESK Dynamic damage evolution temperature-strain rate coupling Dynamic hysteresis embrittlement behavior Antagonistic mechanism
在线阅读 下载PDF
Self-healing,Stretchable,Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors 被引量:4
2
作者 Chun-Xia Zhao Min Guo +5 位作者 Jie Mao Yun-Tao Li Yuan-Peng Wu Hua Guo Dong Xiang Hui Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第3期334-344,I0005,共12页
Flexible hydrogels have shown promise as strain sensors in medical monitoring,human motion detection and intelligent robotics.For a hydrogel strain sensor,certain challenges need to be urgently addressed for practical... Flexible hydrogels have shown promise as strain sensors in medical monitoring,human motion detection and intelligent robotics.For a hydrogel strain sensor,certain challenges need to be urgently addressed for practical applications,such as the damage caused by external effects,leading to equipment failure,and the inability to perceive ambient temperature,resulting in single functionality.Herein,a stretchable,self-healing and dual temperature-strain sensitive hydrogel,with a physically-crosslinked network,is designed by constructing multiple dynamic reversible bonds.Graphene oxide(GO)and iron ions(Fe^(3+))act as dynamic bridges in the cross-linked network and are mediated by the covalent and hydrogen bonding,rendering excellent stretchability to the hydrogel.The reversible features of coordination interactions and hydrogen interactions endow excellent recoverability and self-healing properties.Moreover,the incorporated N-isopropyl acrylamide(NIPAM)provides excellent temperature responsiveness to the hydrogel,facilitating the detection of external temperature changes.Meanwhile,the hydrogels exhibited strain-sensitivity,with a wide working range of 1%-300%,fast response and electrical stability,which can be used as flexible sensors to monitor body motions,e.g.,speaking and the bending of finger,wrist,elbow and knee.Overall,the hydrogel possesses dual sensory capabilities,combining external temperature and strain,for potential applications in wearable multifunctional sensing devices. 展开更多
关键词 Hydrogel sensor SELF-HEALING Dual temperature-strain sensitive Monitor body motions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部