Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms und...Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.展开更多
Flexible hydrogels have shown promise as strain sensors in medical monitoring,human motion detection and intelligent robotics.For a hydrogel strain sensor,certain challenges need to be urgently addressed for practical...Flexible hydrogels have shown promise as strain sensors in medical monitoring,human motion detection and intelligent robotics.For a hydrogel strain sensor,certain challenges need to be urgently addressed for practical applications,such as the damage caused by external effects,leading to equipment failure,and the inability to perceive ambient temperature,resulting in single functionality.Herein,a stretchable,self-healing and dual temperature-strain sensitive hydrogel,with a physically-crosslinked network,is designed by constructing multiple dynamic reversible bonds.Graphene oxide(GO)and iron ions(Fe^(3+))act as dynamic bridges in the cross-linked network and are mediated by the covalent and hydrogen bonding,rendering excellent stretchability to the hydrogel.The reversible features of coordination interactions and hydrogen interactions endow excellent recoverability and self-healing properties.Moreover,the incorporated N-isopropyl acrylamide(NIPAM)provides excellent temperature responsiveness to the hydrogel,facilitating the detection of external temperature changes.Meanwhile,the hydrogels exhibited strain-sensitivity,with a wide working range of 1%-300%,fast response and electrical stability,which can be used as flexible sensors to monitor body motions,e.g.,speaking and the bending of finger,wrist,elbow and knee.Overall,the hydrogel possesses dual sensory capabilities,combining external temperature and strain,for potential applications in wearable multifunctional sensing devices.展开更多
基金supported by National Key Research and Development Program"Advanced Structures and Composite Materials"Special Project[Grant No.2024YFB3712800]the Fundamental Research Funds for the Central Universities[Grant No.DUT22-LAB605]Liaoning Province's"Unveiling the List and Leading the Way"Science and Technology Research and Development Special Project[Grant No.2022JH1/10400043]。
文摘Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials.
基金financially supported by the National Natural Science Foundation of China(No.52173301)International Science and Technology Cooperation Project of Sichuan Province(No.2022YFH0019)Innovative Research Team of Southwest Petroleum University(No.2017CXTD01)。
文摘Flexible hydrogels have shown promise as strain sensors in medical monitoring,human motion detection and intelligent robotics.For a hydrogel strain sensor,certain challenges need to be urgently addressed for practical applications,such as the damage caused by external effects,leading to equipment failure,and the inability to perceive ambient temperature,resulting in single functionality.Herein,a stretchable,self-healing and dual temperature-strain sensitive hydrogel,with a physically-crosslinked network,is designed by constructing multiple dynamic reversible bonds.Graphene oxide(GO)and iron ions(Fe^(3+))act as dynamic bridges in the cross-linked network and are mediated by the covalent and hydrogen bonding,rendering excellent stretchability to the hydrogel.The reversible features of coordination interactions and hydrogen interactions endow excellent recoverability and self-healing properties.Moreover,the incorporated N-isopropyl acrylamide(NIPAM)provides excellent temperature responsiveness to the hydrogel,facilitating the detection of external temperature changes.Meanwhile,the hydrogels exhibited strain-sensitivity,with a wide working range of 1%-300%,fast response and electrical stability,which can be used as flexible sensors to monitor body motions,e.g.,speaking and the bending of finger,wrist,elbow and knee.Overall,the hydrogel possesses dual sensory capabilities,combining external temperature and strain,for potential applications in wearable multifunctional sensing devices.