In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperat...In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.展开更多
In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate ...In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate under thermal and electrical loads.The problem is modeled as axisymmetric based on the membrane theory,with the peeling stress and bending moment being disregarded.A potential theory method,combined with the Hankel transform technique,is utilized to derive the displacement field on the substrate surface.With perfect interfacial bonding assumption,an integral equation governing the phonon interfacial shear stress is formulated and numerically solved by the Chebyshev polynomials.Explicit expressions are derived for the interfacial shear stress,the internal stresses within the PQC film and the substrate,the axial strain,and the stress intensity factors(SIFs).Numerical simulations are conducted to investigate the effects of the film's aspect ratio,material inhomogeneity,material mismatch,and temperature-dependent material properties on its mechanical response.The results provide insights for the functional design and reliability assessment of FG PQC film/substrate systems.展开更多
In this paper Williamson ?uid is taken into account to study its peristaltic ?ow with heat effects. The study is carried out in a wave frame of reference for symmetric channel. Analysis of heat transfer is accomplishe...In this paper Williamson ?uid is taken into account to study its peristaltic ?ow with heat effects. The study is carried out in a wave frame of reference for symmetric channel. Analysis of heat transfer is accomplished by accounting the effects of non-constant thermal conductivity and viscosity and viscous dissipation. Modeling of fundamental equations is followed by the construction of closed form solutions for pressure gradient, stream function and temperature while assuming Reynold's number to be very low and wavelength to be very long. Double perturbation technique is employed, considering Weissenberg number and variable ?uid property parameter to be very small. The effects of emerging parameters on pumping, trapping, axial pressure gradient, heat transfer coe?cient, pressure rise,velocity pro?le and temperature are analyzed through the graphical representation. A direct relation is observed between temperature and thermal conductivity whereas the indirect proportionality with viscosity. The heat transfer coe?cient is lower for a ?uid with variable thermal conductivity and variable viscosity as compared to the ?uid with constant thermal conductivity and constant viscosity.展开更多
Objective To investigate the role of environmental factor—temperature in the regulation of aging process by unc-13 and sbt-1 in Caenorhabditis elegans. Methods The lifespan, the speed of pharynx pumping, and the inte...Objective To investigate the role of environmental factor—temperature in the regulation of aging process by unc-13 and sbt-1 in Caenorhabditis elegans. Methods The lifespan, the speed of pharynx pumping, and the intestinal autofluorescence of unc-13 and sbt-1 mutants were examined at different temperature conditions. In addition, to exclude the possible influences from other factors in unc-13 and sbt-1 mutants, the dauer formation, the thermotaxis, the brood size and the population percentage of the mutants expressing hsp16.2-gfp were further investigated. Results Mutations of unc-13 and sbt-1 significantly increased the mean and the maximum lifespans of nematodes cultured at 20 oC and 25 oC, while no noticeable increase was found at 15 oC in either the mean or the maximum lifespan. Investigations on the speed of pharynx pumping and the intestinal autofluorescence suggested that at 20 oC and 25 oC, mutations of unc-13 and sbt-1 could slow the aging process and delay the accumulation of aging-related cellular damage. Meanwhile, mutations of unc-13 or sbt-1 did not affect the dauer formation or the thermotaxis to different temperatures in nematodes. In contrast, at 20 oC and 25 oC conditions, mutations of unc-13 and sbt-1 significantly decreased the brood size and the percentage of nematodes expressing hsp16.2-gfp, while no such differences were detected at 15 oC. Moreover, the thermotolerance of unc-13 and sbt-1 mutants could be greatly strengthened after the 16-h heat shock at 35 oC. Conclusion The regulation of aging by unc-13 and sbt-1 is temperature-dependent. And the alterations in reproduction capability and stress response may be associated with the formation of this temperature-dependent property.展开更多
The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the tem...The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the temperature are obtained. The influence of anharmonic vibration on these thermal physical properties is also investigated. Some theoretical results are given. If only the harmonic approximation is considered, the Debye temperature of the graphene is unrelated to the temperature. If the anharmonic terms are considered, it increases slowly with the increasing temperature. The molar heat capacity of the graphene increases nonlinearly with the increasing temperature. The mean free path of phonons and the thermal conductivity of the graphene decrease nonlinearly with the increasing temperature. The relative changes of the Debye temperature, the specific heat capacity and the thermal conductivity caused by the anharmonic terms increase with the increasing temperature. The anharmonic effect of atomic vibration becomes more significant under higher temperature.展开更多
Based on the generalized thermoelasticity proposed by Green and Lindsay, the dynamic response of generalized thermoelastic problems with temperature-dependent material properties is investigated. The governing equatio...Based on the generalized thermoelasticity proposed by Green and Lindsay, the dynamic response of generalized thermoelastic problems with temperature-dependent material properties is investigated. The governing equations are formulated and found to be nonlinear because of the temperature-dependence of properties. Owing to the nonlinearity of the governing equations, the finite element method is resorted to for solution. The results obtained show that the temperature-dependent properties influence the variables considered by reducing their magnitudes. This indicates that taking the temperature-dependence of properties into consideration in the investigation of generalized thermoelastic problems is necessary and practical for accurately predicting the thermoelastic behavior.展开更多
Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and ab...Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.展开更多
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transform...This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.展开更多
The temperature-dependent structural changes in 1-butyl-3-methylimidazolium tetrafluoride([Bmim]FeCl4)magnetic ionic liquid(MIL)were investigated by using in-situ X-ray absorption fine structure(XAFS)combined with Ram...The temperature-dependent structural changes in 1-butyl-3-methylimidazolium tetrafluoride([Bmim]FeCl4)magnetic ionic liquid(MIL)were investigated by using in-situ X-ray absorption fine structure(XAFS)combined with Raman spectroscopy and DFT calculations.XAFS re sults revealed that the coordination number and bond length of Fe-Cl in the anion of[Bmim]FeCl4 MIL decreased with increments in temperature.These results directly reflected the dissociation of tetrahedral structure[FeCl4]^-,and the formation of bridge-chain[Fe2 Cl5]^+,and[FeCl2]^+species in the anion of[Bmim]FeCl4 MIL.These behaviors indicated that[FeCl4]^-dissociation was endothermic,and was promoted by increased temperature.The results obtained through XAFS were in agreement with those obtained through Raman spectroscopy and DFT calculations.展开更多
An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2...An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.展开更多
Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable st...Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance ...We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.展开更多
A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of a...A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and con- ductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizon- tal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which success- fully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.展开更多
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is a...Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].展开更多
A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of Ga...A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.展开更多
Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process r...Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P<0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P<0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.展开更多
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g...Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.展开更多
The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K...The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.展开更多
We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method w...We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.展开更多
The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on ...The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with Ti N anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.展开更多
基金supported by the National Natural Science Foundation of China(No.11931013)the Natural Science Foundation of Guangxi Province(No.2022GXNSFDA035078)the Foundamental Research Funds for the Central Universities,CHD(No.300102122115).
文摘In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.
基金Project supported by the National Natural Science Foundation of China(Nos.11902293 and 12272353)。
文摘In this paper,we investigate the interfacial behavior of a thin,penny-shaped,one-dimensional(1D)hexagonal functionally graded(FG)piezoelectric quasicrystal(PQC)film bonded on a temperature-dependent elastic substrate under thermal and electrical loads.The problem is modeled as axisymmetric based on the membrane theory,with the peeling stress and bending moment being disregarded.A potential theory method,combined with the Hankel transform technique,is utilized to derive the displacement field on the substrate surface.With perfect interfacial bonding assumption,an integral equation governing the phonon interfacial shear stress is formulated and numerically solved by the Chebyshev polynomials.Explicit expressions are derived for the interfacial shear stress,the internal stresses within the PQC film and the substrate,the axial strain,and the stress intensity factors(SIFs).Numerical simulations are conducted to investigate the effects of the film's aspect ratio,material inhomogeneity,material mismatch,and temperature-dependent material properties on its mechanical response.The results provide insights for the functional design and reliability assessment of FG PQC film/substrate systems.
文摘In this paper Williamson ?uid is taken into account to study its peristaltic ?ow with heat effects. The study is carried out in a wave frame of reference for symmetric channel. Analysis of heat transfer is accomplished by accounting the effects of non-constant thermal conductivity and viscosity and viscous dissipation. Modeling of fundamental equations is followed by the construction of closed form solutions for pressure gradient, stream function and temperature while assuming Reynold's number to be very low and wavelength to be very long. Double perturbation technique is employed, considering Weissenberg number and variable ?uid property parameter to be very small. The effects of emerging parameters on pumping, trapping, axial pressure gradient, heat transfer coe?cient, pressure rise,velocity pro?le and temperature are analyzed through the graphical representation. A direct relation is observed between temperature and thermal conductivity whereas the indirect proportionality with viscosity. The heat transfer coe?cient is lower for a ?uid with variable thermal conductivity and variable viscosity as compared to the ?uid with constant thermal conductivity and constant viscosity.
基金supported by grants from the National Natural Science Foundation of China (No.30771113, 30870810)the Program for New Century Excellent Talents in Universitythe Innovative Research Program for Undergraduates in China (No. C2007052)
文摘Objective To investigate the role of environmental factor—temperature in the regulation of aging process by unc-13 and sbt-1 in Caenorhabditis elegans. Methods The lifespan, the speed of pharynx pumping, and the intestinal autofluorescence of unc-13 and sbt-1 mutants were examined at different temperature conditions. In addition, to exclude the possible influences from other factors in unc-13 and sbt-1 mutants, the dauer formation, the thermotaxis, the brood size and the population percentage of the mutants expressing hsp16.2-gfp were further investigated. Results Mutations of unc-13 and sbt-1 significantly increased the mean and the maximum lifespans of nematodes cultured at 20 oC and 25 oC, while no noticeable increase was found at 15 oC in either the mean or the maximum lifespan. Investigations on the speed of pharynx pumping and the intestinal autofluorescence suggested that at 20 oC and 25 oC, mutations of unc-13 and sbt-1 could slow the aging process and delay the accumulation of aging-related cellular damage. Meanwhile, mutations of unc-13 or sbt-1 did not affect the dauer formation or the thermotaxis to different temperatures in nematodes. In contrast, at 20 oC and 25 oC conditions, mutations of unc-13 and sbt-1 significantly decreased the brood size and the percentage of nematodes expressing hsp16.2-gfp, while no such differences were detected at 15 oC. Moreover, the thermotolerance of unc-13 and sbt-1 mutants could be greatly strengthened after the 16-h heat shock at 35 oC. Conclusion The regulation of aging by unc-13 and sbt-1 is temperature-dependent. And the alterations in reproduction capability and stress response may be associated with the formation of this temperature-dependent property.
基金Supported by the National Natural Science Foundation of China under Grant No 11574253the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant Nos KJ1601111 and KJ1601118the Basic and Frontier Research Projects of Chongqing under Grant No cstc2015jcyjA40054
文摘The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the temperature are obtained. The influence of anharmonic vibration on these thermal physical properties is also investigated. Some theoretical results are given. If only the harmonic approximation is considered, the Debye temperature of the graphene is unrelated to the temperature. If the anharmonic terms are considered, it increases slowly with the increasing temperature. The molar heat capacity of the graphene increases nonlinearly with the increasing temperature. The mean free path of phonons and the thermal conductivity of the graphene decrease nonlinearly with the increasing temperature. The relative changes of the Debye temperature, the specific heat capacity and the thermal conductivity caused by the anharmonic terms increase with the increasing temperature. The anharmonic effect of atomic vibration becomes more significant under higher temperature.
基金supported by the National Natural Science Foundation of China(Nos.11372123 and 11072101)the Natural Science Foundation of Gansu Province(No.1107RJZA151)+1 种基金the Fundamental Research Funds for the Universities of GansuHong-Liu Excellent Talents Program of Lanzhou University of Technology
文摘Based on the generalized thermoelasticity proposed by Green and Lindsay, the dynamic response of generalized thermoelastic problems with temperature-dependent material properties is investigated. The governing equations are formulated and found to be nonlinear because of the temperature-dependence of properties. Owing to the nonlinearity of the governing equations, the finite element method is resorted to for solution. The results obtained show that the temperature-dependent properties influence the variables considered by reducing their magnitudes. This indicates that taking the temperature-dependence of properties into consideration in the investigation of generalized thermoelastic problems is necessary and practical for accurately predicting the thermoelastic behavior.
基金supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
文摘This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.
基金sponsored by the National Natural Science Foundation of China(Nos.21802095,11805261)Shanghai Sailing Program(No.19YF1458200)+1 种基金the China Postdoctoral Science Foundation(No.2017M621468)the Joint Funds of the National Natural Science Foundation of China(No.U1832152)。
文摘The temperature-dependent structural changes in 1-butyl-3-methylimidazolium tetrafluoride([Bmim]FeCl4)magnetic ionic liquid(MIL)were investigated by using in-situ X-ray absorption fine structure(XAFS)combined with Raman spectroscopy and DFT calculations.XAFS re sults revealed that the coordination number and bond length of Fe-Cl in the anion of[Bmim]FeCl4 MIL decreased with increments in temperature.These results directly reflected the dissociation of tetrahedral structure[FeCl4]^-,and the formation of bridge-chain[Fe2 Cl5]^+,and[FeCl2]^+species in the anion of[Bmim]FeCl4 MIL.These behaviors indicated that[FeCl4]^-dissociation was endothermic,and was promoted by increased temperature.The results obtained through XAFS were in agreement with those obtained through Raman spectroscopy and DFT calculations.
基金Project(2012CB026205)supported by the National Basic Research Program of ChinaProjects(51608264,51778289)supported by the National Natural Science Foundation of ChinaProject(2014Y01)supported by the Transportation Science and Technology Project of Jiangsu Province,China
文摘An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.
基金supported by National Natural Science Foundation of China(Nos.60571031,60501009 and 90406023)National Basic Research Program of China(Nos.2006CB933206 and 2006CB705602).
文摘Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0200503)the National Natural Science Foundation of China(Grant No.61327813)
文摘We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.
基金acknowledge thorough support from the Global COE program from the Ministry of Education, Culture, Sports and Technology (MEXT) of Japan
文摘A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and con- ductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizon- tal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which success- fully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.
文摘Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].
文摘A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.
基金supported financially by the National Natural Science Foundation of China(Nos.31401053 and 31471966)Guangdong Provincial Natural Science Foundation of China(No.2015A030313903)+1 种基金GDAS Special Project of Science and Technology Development(2017GDASCX-0107)the Funds for Environment Construction and Capacity Building of GDAS’Research Platform(2016GDASPT-0107)
文摘Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P<0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P<0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.
文摘Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675020,11375028,11075018 and 10675023
文摘The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.
文摘We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.
基金Supported by the National Key Research and Development Plan under Grant No 2017YFB0403000the Fundamental Research Funds for the Central Universities under Grant No JB181110
文摘The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with Ti N anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.