Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.Th...Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.展开更多
This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereper...This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.展开更多
Optical lenses used in high temperature environment are usually affected by thermal lenses problems, but it is difficult to evaluate their focal shifts in practical applications. A three-dimensional single-lens model ...Optical lenses used in high temperature environment are usually affected by thermal lenses problems, but it is difficult to evaluate their focal shifts in practical applications. A three-dimensional single-lens model based on finite element solver was built to evaluate the focal shift in this study, when the temperature of surface was raised from the initial temperature to the specified temperature. An experimental method based on a Hartmann-Shack wavefront sensor was proposed to verify the rationality of the model. The nearly same results between simulations and experiments for N-BK7 and fused silica were obtained, which proves that it is feasible to analyze focal shifts of optical lenses by simulation methods.展开更多
A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations...A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventio...BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.展开更多
This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwent...This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.展开更多
The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In thi...The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.展开更多
In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grati...In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding(UVAG) model is established, and finite element analysis(FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.展开更多
High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC...High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.展开更多
The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry...The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry rock.At present,how temporary plugging agents plug artificial fractures under high temperature remains unclear.In this paper,by establishing an improved experimental system for the evaluation of temporary plugging performance at high temperature,we clarified the effects of high temperature,injection rate,and fracture width on the pressure response and plugging efficiency of the fracture.The results revealed that the temporary plugging process of artificial fractures in hot dry rock can be divided into four main stages:the initial stage of temporary plugging,the bridging stage of the particles,the plugging formation stage,and the high-pressure dense plugging stage.As the temperature increases,the distribution distance of the temporary plugging agent,the number of pressure fluctuations,and the time required for crack plugging increases.Particularly,when the temperature increases by 100℃,the complete plugging time increases by 90.7%.展开更多
According the importance of the stored grains and other products,it is an essential to keep them from khapra beetle,Trogoderma granarium infestation.This study determined the mortality percentage of 5th instar larvae ...According the importance of the stored grains and other products,it is an essential to keep them from khapra beetle,Trogoderma granarium infestation.This study determined the mortality percentage of 5th instar larvae of T.granarium fed on wheat seeds(25 gm)treated with different weights of silica as well as silica nanoparticles(20,40,60 and 80 mg)at different temperature(9℃,25℃,and 35℃).Study showed that using silica nanoparticles in cold temperature(9℃)was the most efficient treatment with the lowest LC_(50)(lethal concentration required to kill 50%of the population)value and caused the highest toxicity index.In contrast,the least efficient treatment(25℃)with the highest LC_(50) value and showed lowest toxicity index was using silica in normal temperature,when using silica nanoparticles,the cold temperature was the best condition followed by hot temperature(35℃)and finally the normal temperature.On the other hand,using silica in hot temperature was most effective followed by silica with cold temperature and finally silica with normal temperature.The biochemical assays revealed that the change in the experimental temperature had a nonsignificant effect on the total protein content of the larvae.The total lipids and total carbohydrates exhibited a significant increase due to hot treating.5th instar larvae of T.granarium treated with LC50 of silica at high temperature led to a nonsignificant(p≤0.05)decrease in Acetylcholinesterase(AchE)activity compared to treatment at normal temperature.In contrast,Glutathione S-transferase(GST)and Peroxidase activities were significantly(p≤0.05)raised due to the treatment conducted at high temperature.Additionally,treating larvae with LC50 of silica nanoparticles at low temperature caused a significant increase in both GST and peroxidase activities,while the increase in AChE was nonsignificantly(p≤0.05)compared to treatment at normal temperature.Using silica at low temperature could be used as an alternative to chemical insecticides to control T.granarium larvae.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise a...Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.展开更多
Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reducti...Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.展开更多
This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which ca...This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.展开更多
In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high tem...In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high temperature materials include heat-resisting steels,iron-base, nickel-iron-base and nickel-base superalloys. Some achievements - in high temperaturestrength study, new technologies and new alloy development are also discussed.展开更多
Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse clim...Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.展开更多
The safety of lithium-ion batteries is an essential concern where instant and accurate temperature sensing is critical.It is generally desired to put sensors inside batteries for instant sensing.However,the transmissi...The safety of lithium-ion batteries is an essential concern where instant and accurate temperature sensing is critical.It is generally desired to put sensors inside batteries for instant sensing.However,the transmission of internal measurement outside batteries without interfering their normal state is a non-trivial task due to the harsh electrochemical environment,the particular packaging structures and the intrinsic electromagnetic shielding problems of batteries.In this work,a novel in-situ temperature sensing framework is proposed by incorporating temperature sensors with a novel signal transmission solution.The signal transmission solution uses a self-designed integrated-circuit which modulates the internal measurements outside battery via its positive pole without package breaking.Extensive experimental results validate the noninterference properties of the proposed framework.Our proposed in-situ temperature measurement by the self-designed signal modulation solution has a promising potential for in-situ battery health monitoring and thus promoting the development of smart batteries.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
基金supported by the Hundred Talents Programof the Chinese Academy of Sciences,the Pre-Research Project JZX7Y20220414101801the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB35000000)the National Natural Science Foundation Projects(No.51806231).
文摘Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.
文摘This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.
基金supported by the National Natural Science Foundation of China(Nos.61875092 and 11374167)the State’s Key Project of Research and Development Plan(No.2016YFC0101002)the Science and Technology Support Program of Tianjin(No.17YFZCSY00740)
文摘Optical lenses used in high temperature environment are usually affected by thermal lenses problems, but it is difficult to evaluate their focal shifts in practical applications. A three-dimensional single-lens model based on finite element solver was built to evaluate the focal shift in this study, when the temperature of surface was raised from the initial temperature to the specified temperature. An experimental method based on a Hartmann-Shack wavefront sensor was proposed to verify the rationality of the model. The nearly same results between simulations and experiments for N-BK7 and fused silica were obtained, which proves that it is feasible to analyze focal shifts of optical lenses by simulation methods.
基金The National Natural Science Funds Committee(50174035)
文摘A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
文摘BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.
基金supported by grants from National High-Level Hospital Clinical Research Funding(2023-GSP-RC-04).
文摘This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.
基金supported by the National Natural Science Foundation of China (Grant No. 50679024)the Innovation Program for College Graduate of Jiangsu Province of 2007 (Grant No. CX07B_130Z)
文摘The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.
基金supported by the Science and Technology Department of Hubei Province in China(No.2015BAA022)
文摘In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding(UVAG) model is established, and finite element analysis(FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.
文摘High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.
基金supported financially by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.51936001,No.52274002 and No.52192622)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(2021DQ02–0201)Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(No.BIPTACF-002).
文摘The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry rock.At present,how temporary plugging agents plug artificial fractures under high temperature remains unclear.In this paper,by establishing an improved experimental system for the evaluation of temporary plugging performance at high temperature,we clarified the effects of high temperature,injection rate,and fracture width on the pressure response and plugging efficiency of the fracture.The results revealed that the temporary plugging process of artificial fractures in hot dry rock can be divided into four main stages:the initial stage of temporary plugging,the bridging stage of the particles,the plugging formation stage,and the high-pressure dense plugging stage.As the temperature increases,the distribution distance of the temporary plugging agent,the number of pressure fluctuations,and the time required for crack plugging increases.Particularly,when the temperature increases by 100℃,the complete plugging time increases by 90.7%.
文摘According the importance of the stored grains and other products,it is an essential to keep them from khapra beetle,Trogoderma granarium infestation.This study determined the mortality percentage of 5th instar larvae of T.granarium fed on wheat seeds(25 gm)treated with different weights of silica as well as silica nanoparticles(20,40,60 and 80 mg)at different temperature(9℃,25℃,and 35℃).Study showed that using silica nanoparticles in cold temperature(9℃)was the most efficient treatment with the lowest LC_(50)(lethal concentration required to kill 50%of the population)value and caused the highest toxicity index.In contrast,the least efficient treatment(25℃)with the highest LC_(50) value and showed lowest toxicity index was using silica in normal temperature,when using silica nanoparticles,the cold temperature was the best condition followed by hot temperature(35℃)and finally the normal temperature.On the other hand,using silica in hot temperature was most effective followed by silica with cold temperature and finally silica with normal temperature.The biochemical assays revealed that the change in the experimental temperature had a nonsignificant effect on the total protein content of the larvae.The total lipids and total carbohydrates exhibited a significant increase due to hot treating.5th instar larvae of T.granarium treated with LC50 of silica at high temperature led to a nonsignificant(p≤0.05)decrease in Acetylcholinesterase(AchE)activity compared to treatment at normal temperature.In contrast,Glutathione S-transferase(GST)and Peroxidase activities were significantly(p≤0.05)raised due to the treatment conducted at high temperature.Additionally,treating larvae with LC50 of silica nanoparticles at low temperature caused a significant increase in both GST and peroxidase activities,while the increase in AChE was nonsignificantly(p≤0.05)compared to treatment at normal temperature.Using silica at low temperature could be used as an alternative to chemical insecticides to control T.granarium larvae.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
文摘Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.
文摘Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Thorium uranium fuel cycle characteristics and key problem research Project(No.QYZDY-SSW-JSC016)
文摘This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.
文摘In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high temperature materials include heat-resisting steels,iron-base, nickel-iron-base and nickel-base superalloys. Some achievements - in high temperaturestrength study, new technologies and new alloy development are also discussed.
基金National Natural Science Foundation of China, No. 40771016 National Scientific and Technical Supporting Programs during the 11 th Five-Year Plan of China, No.2007BACO3A02
文摘Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.
基金This work was supported by the Beijing Municipal Science and Technology Commission(Grant Z191100002719007)the National Natural Science Foundation of China(Grant 11672341).
文摘The safety of lithium-ion batteries is an essential concern where instant and accurate temperature sensing is critical.It is generally desired to put sensors inside batteries for instant sensing.However,the transmission of internal measurement outside batteries without interfering their normal state is a non-trivial task due to the harsh electrochemical environment,the particular packaging structures and the intrinsic electromagnetic shielding problems of batteries.In this work,a novel in-situ temperature sensing framework is proposed by incorporating temperature sensors with a novel signal transmission solution.The signal transmission solution uses a self-designed integrated-circuit which modulates the internal measurements outside battery via its positive pole without package breaking.Extensive experimental results validate the noninterference properties of the proposed framework.Our proposed in-situ temperature measurement by the self-designed signal modulation solution has a promising potential for in-situ battery health monitoring and thus promoting the development of smart batteries.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.