期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Multipoint Infrared Telemetry System for Measuring the Piston Temperature in Internal Combustion Engines 被引量:5
1
作者 刘金祥 魏春源 +1 位作者 张卫正 郭良平 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期346-349,共4页
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon... A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston. 展开更多
关键词 PISTON temperature measurement infrared telemetry
在线阅读 下载PDF
Research on key techniques of expendable conductivity temperature depth measuring system 被引量:5
2
作者 CHEN Guangyuan DU Libin +3 位作者 HE Haijing LEI Zhuo ZHANG Qisheng WU Chengxuan 《Instrumentation》 2015年第2期18-27,共10页
This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put ... This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%. 展开更多
关键词 expendable device XCTD conductivity sensor high precision temperature measuring circuit remote data transmission
原文传递
Study on the Correction Method of Radiant Temperature Measurement of Turbine Blades Under the Background of High-Temperature Dynamics
3
作者 Shengnan Liu Liwei Chen 《Instrumentation》 2025年第2期80-90,共11页
The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,... The turbine blades operate under high temperature and high pressure conditions,and when using radiation thermometry,the influence of radiation from surrounding blades leads to measurement errors.To address this issue,this paper develops a three-dimensional discretized dynamic radiation transfer model based on the blade shape of the turbine.The relationship between the radiation angle coefficient of the surrounding blades and the rotation angle of the blade under test is analyzed.The radiation angle coefficient is calculated using the triangular element method,and temperature inversion is performed based on the effective emissivity to compute the measurement error.The results show that under dynamic high temperature conditions,the temperature measurement error caused by reflection at the selected 60%leaf height point varies with the rotation angle,and the maximum reaches 25.58K.The angular coefficient exhibits periodic fluctuations with changes in rotation angle,and the maximum effective emissivity increases as the rotation angle increases.As the blade height increases,the impact of reflected radiation on radiometric temperature measurement errors shows a decreasing trend.This study provides a reference for radiation thermometry in dynamic high-temperature environments. 展开更多
关键词 radiation temperature measurement dynamic background turbine blades effective emissivity ERROR
原文传递
Deformation characteristics and interfacial damage of CRTS II slab track joints under operating temperature conditions
4
作者 DONG Bo CHEN Zhi-yuan +3 位作者 ZHU Hao CAI Xiao-pei ZHANG Xing HE Xu 《Journal of Central South University》 2025年第9期3657-3674,共18页
Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structur... Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structure.Based on measured data,a thermal-mechanical coupling model of the track was established.The deformation characteristics and interfacial damage behavior of joints under typical temperature fields were studied.The findings indicate that the annual extreme temperature range of the slab track,fluctuates from−1.4 to 49.8℃.The annual temperature gradient within the vertical depth range of 0 to 0.2 m of the track varies between−16.19℃/m and 30.15℃/m.The vertical deformation of joints is significantly influenced by high temperatures,with a maximum measured deformation of 0.828 mm.The joint seams are primarily affected by low temperatures,which lead to a separation of 0.9 to 1.0 mm.Conversely,interlayer damage of joints is predominantly influenced by elevated temperatures.In summer,the maximum ratio of interface damage area in the joint can reach up to 95%,with the maximum debonding area ratio can be as high as 84%.The research results can provide help for joint damage regularity and deformation control of CRTS II slab track. 展开更多
关键词 CRTS II slab track temperature measurement thermo-mechanical coupling analysis deformation characteristics damage evolution
在线阅读 下载PDF
Accurate Measurements and Error Analysis of Bi_(2)Te_(3)-Based Low-Temperature Thermoelectrics
5
作者 Jie Zhang Yixuan Ge +9 位作者 Minhua Huang Xiaohan Qin Chao Xin Linhan Wang Wenfeng Du Tianbo Lu Huaizhou Zhao Wenjie Liang Yongjun Cao Guodong Li 《Chinese Physics Letters》 2025年第5期100-116,共17页
The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a... The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics. 展开更多
关键词 measurement system thermoelectric parameters low temperature measurements thermoelectric properties thermoelectric cooling devices error analyses standard measurement protocols characterization thermoelectric properties
原文传递
A 1.55μm laser gain medium based on Yb^(3+)and Er^(3+)co-doped KBa_(0.94)Ca_(0.06)Y(MoO_(4))_(3) crystal with in-situ operating temperature self-monitoring capability
6
作者 Yimin Yang Rujia Chen +13 位作者 Zhipeng Zhang Huisheng Liu Zhuang Leng Xiliang Jiang Chunyu Zuo Lingbo Zhou Chun Li Fanming Zeng Weiling Yang Hai Lin Shasha Li Lina Liu Jianhua Hou Zhongmin Su 《Journal of Rare Earths》 2025年第9期1784-1795,共12页
The 1.55μm laser technology is widely applied in military,information communication,biomedicine and other fields.With the deepening development of these application areas,the demand for novel 1.55μm laser gain media... The 1.55μm laser technology is widely applied in military,information communication,biomedicine and other fields.With the deepening development of these application areas,the demand for novel 1.55μm laser gain media is becoming increasingly urgent.This study reports a novel Yb^(3+),Er^(3+)co-doped KBa_(0.94)Ca_(0.06)Y(MoO_(4))_(3) (KBCYM)crystal.In this crystal,Yb^(3+)serves as a sensitizer,significantly enhancing the emission intensity of Er^(3+)in both visible and near-infrared bands.Notably,when the concentration of Yb^(3+)reaches 6 mol%,the emission intensity peaks at 1.55μm.Optical cross-section calculations reveal that the crystal exhibits a low laser pumping threshold at this concentration,demonstrating its potential as a laser gain medium.However,the crystal inevitably generates thermal effects during operation,which may adversely affect its performance.Therefore,real-time monitoring of the operating temperature is crucial.The thermal stability of the crystal was evaluated by measuring the temperature dependence of its luminescence intensity in the near-infrared band.Remarkably,even when the temperature rises to 553 K,the emission intensity at 1.55μm only decreases by 10.9%.Additionally,the temperature sensing performance was evaluated using fluorescence intensity ratio techniques,yielding absolute and relative sensitivities of 0.00981 K^(-1)at 453 K and 1.32%/K at 303 K,respectively,highlighting its potential for optical temperature sensing.Finally,through leveraging the unique properties of Yb^(3+),Er^(3+):KBCYM crystals,we successfully developed 1.55μm luminescent optical devices with practical applications.These devices not only exhibit efficient luminescent performance,but also possess a self-temperature measu rement functio n,opening up new avenues for the further development of laser technology. 展开更多
关键词 Molybdate crystal Top-seeded solution growth(TSSG) Energy transfer Laser materials Non-contact temperature measurement Rare earths
原文传递
In-process cutting temperature measurement for ultra-precision machining:a comprehensive review and future perspectives
7
作者 Shiquan LIU Yuqi DING +4 位作者 Kaiyang XIA Hui LI Liang AN Zhongwei LI Yuan-Liu CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第9期853-875,共23页
With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevit... With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevity.This review comprehensively evaluates modern in-process cutting temperature measurement methods,comparing conventional approaches and emerging technologies.Thermal conduction-based and radiation-based measurement paradigms are analyzed in terms of their merits,limitations,and domain-specific applicability,particularly with regard to the unique challenges involving micro-scale cutting zones in UPM.Special emphasis is placed on micro-scale sensor-integrated tools and self-sensing tools that enable real-time thermal monitoring at cutting edges.Furthermore,we explore thermal monitoring and management techniques for atomic and close-to-atomic scale manufacturing(ACSM),as well as the transformative potential of emerging technologies like artificial intelligence(AI),internet of things(IoT),and data fusion for machining temperature measurement.This review may serve as a reference for UPM cutting temperature measurement research,helping foster the development of optimized process control technologies. 展开更多
关键词 Cutting temperature measurement Ultra-precision machining(UPM) In-process monitoring Smart sensors Micro-scale cutting zones
原文传递
Thermal Performance and Application of a Self-Powered Coal Monitoring System with Heat Pipe and Thermoelectric Integration for Spontaneous Combustion Prevention
8
作者 Tao Lin Chengdai Chen +2 位作者 Liyao Chen Fengqin Han Guanghui He 《Frontiers in Heat and Mass Transfer》 2025年第5期1661-1680,共20页
Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for du... Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety. 展开更多
关键词 Coal pile thermal safety heat pipe thermoelectric coupling self-powered temperature measurement heat transfer characteristics
在线阅读 下载PDF
Infrared radiation method for measuring ice segregation temperature of artificially frozen soils 被引量:3
9
作者 Zhou Guoqing Zhang Qi +1 位作者 Xu Zhiwei Zhou Yang 《International Journal of Mining Science and Technology》 2012年第1期35-40,共6页
In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional fro... In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly. 展开更多
关键词 One-dimensional freezing Final lens Ice segregation temperature measurement Infrared radiation method
在线阅读 下载PDF
Research on the principle of space high-precision temperature control system of liquid crystals based Stokes polarimeter 被引量:1
10
作者 Xin-Wei Zhang Yang Zhang +2 位作者 Jia-Ben Lin Jun-Feng Hou Yuan-Yong Deng 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第1期97-104,共8页
The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and wi... The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter. 展开更多
关键词 liquid crystals based Stokes polarimeter high-precision temperature measurement space high-precision temperature control temperature field analysis PID control
在线阅读 下载PDF
New Measuring Temperature Setup with Optical Probe
11
作者 HOU Peiguo, LIU Jianming(Yanshan University, Qinbuangdao 066004, CHN ) 《Semiconductor Photonics and Technology》 CAS 1997年第1期71-73,共3页
Abstract: A new setup of measuring temperature is developed, which the probe is a micro- power consumptive one with CMOS circuit and is driven by optical power. For transmitting the measured signal and optical power s... Abstract: A new setup of measuring temperature is developed, which the probe is a micro- power consumptive one with CMOS circuit and is driven by optical power. For transmitting the measured signal and optical power signal in a long distance, the fiber technology is applied in this setup. 展开更多
关键词 Micro - power Consumptive Probe Optical Fiber Transmission Sen-sors temperature Measurement
在线阅读 下载PDF
Development and application of the standard for infrared intelligent body temperature measurement system in the normalized COVID-19 prevention and control
12
作者 Huang Yong Ren Wenjing 《China Standardization》 2022年第S01期42-46,共5页
In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wu... In the phase of the normalized COVID-19 prevention and control,non-contact temperature measurement is one of the most efficient and convenient methods for initial screening of suspected cases.In the year of 2020 in Wuhan,such non-contact equipment was urgently demanded,standards development in the traditional way cannot satisfy the market needs.So,the research and development of this standard for infrared intelligent body temperature measurement system was carried out in a rapid way. 展开更多
关键词 temperature measurement COVID-19 pandemic prevention and control standards development
原文传递
Temperature Field of PC Box Girder Bridge Based on GPRS Temperature Collection System
13
作者 YANG Zeying LIU Jing +2 位作者 QU Jianbo ZHOU Xiangshan LI Lixin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第3期269-276,共8页
In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote r... In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve. 展开更多
关键词 bridge engineering concrete curved box girder bridge temperature distribution and temperature effect measured data and finite element analysis
原文传递
Experimental investigation for temperature and emissivity by flame emission spectrum in a cavity of rocket based combined cycle combustor chamber
14
作者 Weiguang Cai Shu Zheng +4 位作者 Yan Wang Bing Liu Shaohua Zhu Li Zhao Qiang Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期114-122,共9页
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus... Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6. 展开更多
关键词 Rocket-based combined-cycle Supersonic combustion Flame temperature measurement EMISSIVITY Laser induced plasma combustion enhancement
在线阅读 下载PDF
Deep learning-assisted common temperature measurement based on visible light imaging
15
作者 朱佳仪 何志民 +8 位作者 黄成 曾峻 林惠川 陈福昌 余超群 李燕 张永涛 陈焕庭 蒲继雄 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期230-236,共7页
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap... Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields. 展开更多
关键词 convolutional neural network visible light image temperature measurement low-to-medium-range temperatures
原文传递
Study on Space Environment Influence and Protection of Infrared Temperature Measuring Equipment
16
作者 ZHENG Zhenhua 《外文科技期刊数据库(文摘版)工程技术》 2021年第2期722-726,共5页
The research system based on intelligent handheld devices combined with a portable infrared camera, relying on the intelligent shipment inspection control platform of direct testing of the infrared spectrum of acquisi... The research system based on intelligent handheld devices combined with a portable infrared camera, relying on the intelligent shipment inspection control platform of direct testing of the infrared spectrum of acquisition and analysis, to provide intelligent auxiliary judgment for equipment overheating, effectively avoid the tedious report late processing and upload process, improve the efficiency and accuracy of the field work, has a good application prospect and popularization value. 展开更多
关键词 intelligent transportation and inspection control platform infrared temperature measurement infrar
原文传递
Measurement of emissivity with a new grey body and novel IR thermal sensor dubbed TMOS
17
作者 Moshe Avraham Shlomi Bouscher +2 位作者 Jonathan Nemirovsky Yael Nemirovsky 《红外与毫米波学报》 北大核心 2025年第1期17-24,共8页
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.... The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported. 展开更多
关键词 BLACKBODY grey body graybody cavity blackbody extended area blackbody EMISSIVITY IR thermometry remote temperature measurement
在线阅读 下载PDF
Nano-thermometry in photothermal catalysis
18
作者 Lin Zhang Chaoran Li +2 位作者 Thongthai Witoon Xingda An Le He 《Chinese Journal of Structural Chemistry》 2025年第4期18-21,共4页
Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transition... Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes. 展开更多
关键词 solar energy conversion chemical conversionsbesidesdirect nano thermometry situ temperature measurement thermal activation light heat conversion photoand thermal catalytic mechanisms driven photothermal catalysis
原文传递
Natural phenomena can predict the weather
19
作者 刘丽 《疯狂英语(初中天地)》 2025年第4期30-33,共4页
Nature is amazing!Sometimes you don’t need a weather App to predict rain or shine-you just need nature!Feel the heat:listen to crickets Want to know the outside temperature?Listen to the crickets!Count how many times... Nature is amazing!Sometimes you don’t need a weather App to predict rain or shine-you just need nature!Feel the heat:listen to crickets Want to know the outside temperature?Listen to the crickets!Count how many times a cricket chirps in 15 seconds and add 40.That’s the temperature in Fahrenheit(华氏温度,1℉≈0.56℃).Do it several times and find the average. 展开更多
关键词 weather prediction weather app temperature measurement FAHRENHEIT natural phenomena cricket chirping
在线阅读 下载PDF
Application of K-Type Heated Junction Thermocouples for Water Level Measurement in PWR and BWR Reactors:A Comparative Study of 2-Wire vs.3-Wire Connections
20
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第4期127-132,共6页
Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJ... Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors. 展开更多
关键词 K-type thermocouple heated junction water level measurement PWR BWR temperature measurement nuclear reactor instrumentation thermocouple wiring configurations 2-wire vs.3-wire connection radiation resistance
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部