期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Fiber Concrete under Temperature Drop Load with Stochastic FEM
1
作者 齐锋 张文金 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期161-165,共5页
Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM).It is found that fibers can enhance concrete ability to resist tem- perature dro... Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM).It is found that fibers can enhance concrete ability to resist tem- perature drop load for improving concrete's fracture energy and deferring the crack process.It is found for concrete not to improve apparently its tensile strength and fracture energy is recommended to be its appraisal parameter. 展开更多
关键词 fiber concrete stochastic finite element method temperature drop load
在线阅读 下载PDF
Effects of CPA Loading Temperature and Removal Protocols on MNC Vitrification
2
作者 Yang JIN~1 Xue-Hu MA~1 Dan GE~1 Tian-Qing LIU~1 Zhan-Feng CUI~(1,2)1(Stem Cell and Tissue Engineering Laboratory, Dalian University of Technology, Dalian 116024, China)2(Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, UK) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期87-88,共2页
关键词 CPA MNC Effects of CPA loading temperature and Removal Protocols on MNC Vitrification
暂未订购
Thermal-induced upwarp buckling analysis of CRTS Ⅱ slab ballastless tracks experiencing joint damage
3
作者 Chang XU Tianci XU +2 位作者 Weixing LIU Zhixuan WANG Pingrui ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第8期738-754,共17页
When subjected to sustained high temperatures,the structure of the continuous China railway track system(CRTS)II railway track is susceptible to internal axial pressure,leading to joint damage and the potential for up... When subjected to sustained high temperatures,the structure of the continuous China railway track system(CRTS)II railway track is susceptible to internal axial pressure,leading to joint damage and the potential for upwarp buckling of the track slab.This study employs model testing to derive the upwarp buckling deformation curve of the track slab under conditions of joint damage.An analytical expression for the upwarp buckling equilibrium path of the track slab is derived through the application of the energy principle.Validation of the outcomes is performed by the comparison with experimental data.The effects of initial upwarp amplitude,initial upwarp curve type,elastic modulus,thickness,and gravity load on the upwarp buckling response of the track slab were investigated.The results show that:1)The upwarp deformation of the track slab in the narrow joint damage state is concentrated in a minor range on both sides of the joint,forming an inverted‘V’shape with concave ends.2)The joint damage can significantly reduce the upwarp buckling critical temperature rise of the track slab.3)The magnitude of the initial upwarp amplitude dictates the buckling mode of the track slab,while the initial upwarp curve predominantly influences the upwarp buckling critical temperature rise.Notably,an initial upwarp amplitude below 6.5 mm ensures the buckling resistance for up to a 60℃temperature rise.4)The increases in elastic modulus,gravity load,and track slab thickness can increase the upwarp buckling critical temperature rise.As the initial upwarp amplitude increases,the influence of these factors on the upwarp buckling critical temperature rise of the track slab gradually diminishes. 展开更多
关键词 CRTSⅡslab track Joint damage Upwarp buckling Deformation energy temperature load
原文传递
Optimized joint repair effects on damage evolution and arching mechanism of CRTS II slab track under extreme thermal conditions
4
作者 CAI Xiao-pei CHEN Ze-lin +3 位作者 CHEN Bo-jing ZHONG Yang-long ZHOU Rui HUANG Yi-chen 《Journal of Central South University》 2025年第6期2273-2287,共15页
To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track ... To address the issue of extreme thermal-induced arching in CRTS II slab tracks due to joint damage,an optimized joint repair model was proposed.First,the formula for calculating the safe temperature rise of the track was derived based on the principle of stationary potential energy.Considering interlayer evolution and structural crack propagation,an optimized joint repair model for the track was established and validated.Subsequently,the impact of joint repair on track damage and arch stability under extreme temperatures was studied,and a comprehensive evaluation of the feasibility of joint repair and the evolution of damage after repair was conducted.The results show that after the joint repair,the temperature rise of the initial damage of the track structure can be increased by 11℃.Under the most unfavorable heating load with a superimposed temperature gradient,the maximum stiffness degradation index SDEG in the track structure is reduced by about 81.16%following joint repair.The joint repair process could effectively reduce the deformation of the slab arching under high temperatures,resulting in a reduction of 93.96%in upward arching deformation.After repair,with the damage to interfacing shear strength,the track arch increases by 2.616 mm. 展开更多
关键词 CRTS II slab track optimized joint repair arching mechanism temperature load damage initiation and evolution
在线阅读 下载PDF
On the interfacial behavior of a one-dimensional hexagonal piezoelectric quasicrystal film based on the beam theory
5
作者 Wenkai ZHANG C.S.LU +2 位作者 Minghao ZHAO Cuiying FAN Huayang DANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期289-304,共16页
In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical ... In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems. 展开更多
关键词 one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)film beam theory electric and temperature loads Chebyshev polynomial interfacial behavior
在线阅读 下载PDF
Temperature and loading-rate dependent critical stress intensity factor of dislocation nucleation from crack tip:Atomistic insights into cracking at slant twin boundaries in nano-twinned TiAl alloys
6
作者 Rong Fu Zhiyuan Rui +3 位作者 Jun-Ping Du Shihao Zhang Fan-Shun Meng Shigenobu Ogata 《Journal of Materials Science & Technology》 2025年第19期290-303,共14页
This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incor... This paper investigates the temperature and loading rate dependencies of the critical stress intensity fac-tor(KIC)for dislocation nucleation at crack tips.We develop a new KIC formula with a generalized form by incorporating the atomistic reaction pathway analysis into Transition State Theory(TST),which cap-tures the KIC of the first dislocation nucleation event at crack tips and its sensitivity to temperature and loading rates.We use this formula and atomistic modeling information to specifically calculate the KIC for quasi-two-dimensional crack tips located at various slant twin boundaries in nano-twinned TiAl al-loys across a wide range of temperatures and strain rates.Our findings reveal that twinning dislocation nucleation at the crack tip dominates crack propagation when twin boundaries(TBs)are tilted at 15.79°and 29.5°.Conversely,when TBs tilt at 45.29°,54.74°,and 70.53°,dislocation slip becomes the preferred mode.Additionally,at TB tilts of 29.5°and 70.53°,at higher temperatures above 800 K and typical exper-imental loading rates,both dislocation nucleation modes can be activated with nearly equal probability.This observation is particularly significant as it highlights scenarios that molecular dynamics simulations,due to their time scale limitations,cannot adequately explore.This insight underscores the importance of analyzing temperature and loading rate dependencies of the KIC to fully understand the competing mechanisms of dislocation nucleation and their impact on material behavior. 展开更多
关键词 Crack Dislocation nucleation Critical stress intensity factor temperature and loading rate sensitivity Twin boundary Atomistic simulation TiAl alloy
原文传递
SiCp/Al复合材料高温蠕变行为 被引量:3
7
作者 王金辉 金培鹏 +1 位作者 张瑞 崔闯 《材料热处理学报》 EI CAS CSCD 北大核心 2017年第1期14-18,共5页
研究了蠕变温度与蠕变应力载荷对SiCp/Al复合材料高温蠕变行为的影响,分析了该复合材料的蠕变断裂机制,并计算得出了材料的应力指数与激活能。结果表明:蠕变速率随蠕变应力荷载的增大和蠕变温度的升高而增大,应力指数与变形激活能分别为... 研究了蠕变温度与蠕变应力载荷对SiCp/Al复合材料高温蠕变行为的影响,分析了该复合材料的蠕变断裂机制,并计算得出了材料的应力指数与激活能。结果表明:蠕变速率随蠕变应力荷载的增大和蠕变温度的升高而增大,应力指数与变形激活能分别为n=9.8和Q=182 k J/mol。该复合材料的蠕变断裂机制为韧性断裂。通过对比得出,SiCp/Al复合材料的抗高温蠕变性能明显优于基体材料。 展开更多
关键词 蠕变温度 蠕变应力载荷 高温蠕变 蠕变断裂机制
原文传递
Dynamic Characteristics of Metro Vehicle under Thermal Deformation of Long-Span Cable-Stayed Bridge
8
作者 Quanming Long Qianhua Pu +2 位作者 Wenhao Zhou Li Zhu Zhaowei Chen 《World Journal of Engineering and Technology》 2022年第3期656-677,共22页
In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamic... In order to study the influence of thermal deformation of long-span cable- stayed bridge (LSCSB) on the dynamic characteristics of metro vehicle on the bridge, based on the theory of vehicle-track coupled dynamics, the rigid-flexible coupled dynamic model of metro vehicle-track-LSCSB system is established by using finite element method and multi-rigid-body dynamics. Adopting this model, the deformation of LSCSB subject to temperature is analyzed, then the comprehensive effect of track random irregularity and rail deformation caused by temperature load is considered to study the dynamic characteristics of metro vehicle running through the bridge, and finally the influences of temperature increment and running speed on concerned dynamic indices of vehicle are studied. The results show that the LSCSB deforms obviously subject to temperature load, and the overall performance is that the cooling is arched, and the heating is bent, and the shape variable changes almost linearly with the temperature load. According to the parameters studied in this paper, the rail deformation caused by temperature load increases the wheel-rail vertical force, derailment coefficient and wheel load reduction rate by 1.5%, 3.1% and 5% respectively. The vertical acceleration of the vehicle body decreases by 2.4% under the cooling condition, while increases by 3.7% under the heating condition. The dynamic response of the bridge changes under temperature load. The maximum vertical and horizontal displacement in the middle of the main beam span are 6.24 mm and 2.19 mm respectively, and the maximum vertical and horizontal acceleration are 1.29 cm/s<sup>2</sup> and 2.54cm/s<sup>2</sup> respectively. The derailment coefficient and vertical acceleration of vehicle body are more affected by temperature load, and the wheel load reduction rate and wheel-rail vertical force are more affected by speed. The conclusion of this paper provides a reference for subsequent scholars to study the influence of thermal deformation on the dynamic response of vehicles on LSCSB. 展开更多
关键词 Vehicle Engineering Vehicle Rail Bridge Coupling Vibration LSCSB temperature load Dynamic Characteristics
在线阅读 下载PDF
THE THERMAL STRESS ANALYSIS OF THE INTERFACIAL EDGE IN DISSIMILAR STRUCTURE AND THE EFFECTS OF GEOMETRIC SHAPE
9
作者 亢一澜 贾有权 王燕群 《Transactions of Tianjin University》 EI CAS 1996年第2期8+3-7,共6页
This paper describes the analysis of the thermal stress concentration and the effects of geometrical shape in the interfacial edge by FEM. It is shown that the elevated stress in a dissim... This paper describes the analysis of the thermal stress concentration and the effects of geometrical shape in the interfacial edge by FEM. It is shown that the elevated stress in a dissimilar material caused by temperature is only restricted in a minor region of the interfacial edge, where the stress peak value and and the stress gradient are high. It is also found that narrowing the boundary angle can effectively reduce the peak value of stress components on the interfacial layer, especially the peeling stress σ y , which is a condition of the debonding failure in the interface.θ=60, an obvious variation, proves that selecting a reasonable edge geometrical shape helps to reduce the value of the maximum stress. At last the methods of relaxing stress concentration and effects of the geometric blunt are also discussed. 展开更多
关键词 bimaterial structure temperature loading stress concentration geometric shape of interface edge
在线阅读 下载PDF
Optimal Thermal Insulation Thickness in Isolated Air-Conditioned Buildings and Economic Analysis
10
作者 Mousa M. Mohamed 《Journal of Electronics Cooling and Thermal Control》 2020年第2期23-45,共23页
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe... The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days. 展开更多
关键词 Building Heat load Cooling load temperature Difference Energy Saving Power Consumption Annual Cooling Degree-Day Optimal Thermal Insulation Thickness Payback Period
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部