The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical cou...The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals.展开更多
The temperature effect of rock failure has primarily focused on high temperature and large temperature gradients.However,the temperature range of engineered rocks in high ground temperature tunnel is generally within ...The temperature effect of rock failure has primarily focused on high temperature and large temperature gradients.However,the temperature range of engineered rocks in high ground temperature tunnel is generally within 100℃.For this,this study conducts real-time thermomechanical coupling tests with small temperature gradient within the engineering temperature.We analyzed rock mechanical parameter,rock failure characteristics,and acoustic emission(AE)and energy characteristics.The results indicate that the strength,peak strain,elastic modulus,and peak energy storage of sandstone decrease with increasing temperature.The peak AE count of sandstone in triaxial test at high temperature decreases with increasing temperature.The RA(Rising time/Amplitude)and AF(Average frequency)parameters associated with the AE signals indicate that the shear and tensile cracks are produced almost simultaneously throughout the rock failure process with increasing temperature.The PFC(particle flow code)simulation results show that the crack number of PBM(parallel bond model)specimen at high σ_(3) is significantly higher than that at low σ_(3) and the cracks number difference under high and low σ_(3) also rises as the temperature increases.Finally,the strength attenuation characteristics are explained by the competition and coupling action of temperature and σ_(3).This paper provides theoretical insights into rock failure mechanisms under thermomechanical coupling related to underground engineering.展开更多
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distributio...Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF.展开更多
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav...A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system.展开更多
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process...In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs.展开更多
Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In prac...Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In practice,CO_(2)RR and CORR are typically operated at industrially relevant current densities,making the process exothermal.Although the increased operation temperature is known to affect the performance of CO_(2)RR and CORR,the relationship between temperatures and kinetic parameters was not clearly elaborated,particularly in zero-gap reactors.In this study,we detail the effect of the temperature on Cu-catalyzed CO_(2)RR and CORR.Our electrochemical and operando spectroscopic studies show that high temperatures increase the activity of CO_(2)RR to CO and CORR to C_(2)H_(4) by enhancing the mass transfer of CO_(2)and CO.As the rates of these two processes are highly influenced by reactant diffusion,elevating the operating temperature results in high local CO_(2)and CO availability to accelerate product formation.Consequently,the ^(*)CO coverage in both cases increases at higher temperatures.However,under CO_(2)RR conditions,^(*)CO desorption is more favorable than carbon-carbon(C—C)coupling thermodynamically at high temperatures,causing the reduction in the Faradaic efficiency(FE)of C_(2)H_(4).In CORR,the high-temperature-augmented CO diffusion overcomes the unfavorable adsorption thermodynamics,increasing the probability of C—C coupling.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte...Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.展开更多
Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually ha...Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually has the behavior of complex multiple internal resonances.In addition,the varying temperature fields make the responses of the system further difficult to obtain.Therefore,the multiple internal resonances of composite cylindrical shells with porosities induced by rotation with varying temperature fields are studied in this paper.Three different types of the temperature fields,the Coriolis forces,and the centrifugal force are considered here.The Hamilton principle and the modified Donnell nonlinear shell theory are used to obtain the equilibrium equations of the system,which are transformed into the ordinary differential equations(ODEs)by the multi-mode Galerkin technique.Thereafter,the pseudo-arclength continuation method,which can identify the regions of instability,is introduced to obtain the numerical results.The detailed parametric analysis of the rotating composite shells is performed.Multiple internal resonances caused by the interaction between backward and forward wave modes and the energy transfer phenomenon are detected.Besides,the nonlinear amplitude-frequency response curves are different under different temperature fields.展开更多
This paper provides a theoretical analysis on the effects of an external Zeeman field and Rashba spin-orbit interactions on superconductivity.We have extensively studied their influence on the superconducting transiti...This paper provides a theoretical analysis on the effects of an external Zeeman field and Rashba spin-orbit interactions on superconductivity.We have extensively studied their influence on the superconducting transition temperature Tc and the quasiparticle excitation energy.Our investigation includes a detailed examination of both the s-wave and p-wave pairing states.Implications for the recently discovered family of superconductors,A_(2)Cr_(3)As_(3)(A=Na,K,Rb and Cs),as well as the validation of our theory have been discussed.展开更多
基金Project supported by the Basic Scientific Research Foundation of College and University in Heilongjiang Province,China(Grant No.2018QNL-16)the Guiding Science and Technology Project of Daqing City(GSTPDQ),China(Grant No.zd-2019-03)the National Natural Science Foundation of China(Grant Nos.11304061 and 51572056).
文摘The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals.
基金supported by the National Natural Science Foundation of China(Grant Nos.42107211 and 42130719)the Natural Science Foundation of Sichuan Province(Grant No.2025ZNSFSC0097).
文摘The temperature effect of rock failure has primarily focused on high temperature and large temperature gradients.However,the temperature range of engineered rocks in high ground temperature tunnel is generally within 100℃.For this,this study conducts real-time thermomechanical coupling tests with small temperature gradient within the engineering temperature.We analyzed rock mechanical parameter,rock failure characteristics,and acoustic emission(AE)and energy characteristics.The results indicate that the strength,peak strain,elastic modulus,and peak energy storage of sandstone decrease with increasing temperature.The peak AE count of sandstone in triaxial test at high temperature decreases with increasing temperature.The RA(Rising time/Amplitude)and AF(Average frequency)parameters associated with the AE signals indicate that the shear and tensile cracks are produced almost simultaneously throughout the rock failure process with increasing temperature.The PFC(particle flow code)simulation results show that the crack number of PBM(parallel bond model)specimen at high σ_(3) is significantly higher than that at low σ_(3) and the cracks number difference under high and low σ_(3) also rises as the temperature increases.Finally,the strength attenuation characteristics are explained by the competition and coupling action of temperature and σ_(3).This paper provides theoretical insights into rock failure mechanisms under thermomechanical coupling related to underground engineering.
文摘Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF.
基金funding support from the National Natural Science Foundation of China(Grant Nos.42077262 and 42077261).
文摘A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system.
基金Project supported by the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)
文摘In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs.
基金supported by the National Natural Science Foundation of China(22179088)the Natural Science Foundation of Jiangsu Province of China(BK20210699)+2 种基金the National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)the Program for Jiangsu Specially-Appointed Professors,the Program of Soochow Innovation and Entrepreneurship Leading Talents(ZXL2022450)the start-up supports of Soochow University,Suzhou Key Laboratory of Functional Nano&Soft Materials,the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Cu-catalyzed electrochemical CO_(2)reduction reaction(CO_(2)RR)and CO reduction reaction(CORR)are of great interest due to their potential to produce carbon-neutral and value-added multicarbon(C_(2+))chemicals.In practice,CO_(2)RR and CORR are typically operated at industrially relevant current densities,making the process exothermal.Although the increased operation temperature is known to affect the performance of CO_(2)RR and CORR,the relationship between temperatures and kinetic parameters was not clearly elaborated,particularly in zero-gap reactors.In this study,we detail the effect of the temperature on Cu-catalyzed CO_(2)RR and CORR.Our electrochemical and operando spectroscopic studies show that high temperatures increase the activity of CO_(2)RR to CO and CORR to C_(2)H_(4) by enhancing the mass transfer of CO_(2)and CO.As the rates of these two processes are highly influenced by reactant diffusion,elevating the operating temperature results in high local CO_(2)and CO availability to accelerate product formation.Consequently,the ^(*)CO coverage in both cases increases at higher temperatures.However,under CO_(2)RR conditions,^(*)CO desorption is more favorable than carbon-carbon(C—C)coupling thermodynamically at high temperatures,causing the reduction in the Faradaic efficiency(FE)of C_(2)H_(4).In CORR,the high-temperature-augmented CO diffusion overcomes the unfavorable adsorption thermodynamics,increasing the probability of C—C coupling.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
基金support from the National Natural Science Foundation of China(Grant No.52208387)Open Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Land and Resources,China(Fujian Key Laboratory of Geohazard Prevention)(Grant No.FJKLGH2022K001).
文摘Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.
基金supported by the National Natural Science Foundation of China(No.11972204)。
文摘Composite cylindrical shells,as key components,are widely employed in large rotating machines.However,due to the frequency bifurcations and dense frequency spectra caused by rotation,the nonlinear vibration usually has the behavior of complex multiple internal resonances.In addition,the varying temperature fields make the responses of the system further difficult to obtain.Therefore,the multiple internal resonances of composite cylindrical shells with porosities induced by rotation with varying temperature fields are studied in this paper.Three different types of the temperature fields,the Coriolis forces,and the centrifugal force are considered here.The Hamilton principle and the modified Donnell nonlinear shell theory are used to obtain the equilibrium equations of the system,which are transformed into the ordinary differential equations(ODEs)by the multi-mode Galerkin technique.Thereafter,the pseudo-arclength continuation method,which can identify the regions of instability,is introduced to obtain the numerical results.The detailed parametric analysis of the rotating composite shells is performed.Multiple internal resonances caused by the interaction between backward and forward wave modes and the energy transfer phenomenon are detected.Besides,the nonlinear amplitude-frequency response curves are different under different temperature fields.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1403403)the National Natural Science Foundation of China(Grant Nos.12274441,and 12034004)。
文摘This paper provides a theoretical analysis on the effects of an external Zeeman field and Rashba spin-orbit interactions on superconductivity.We have extensively studied their influence on the superconducting transition temperature Tc and the quasiparticle excitation energy.Our investigation includes a detailed examination of both the s-wave and p-wave pairing states.Implications for the recently discovered family of superconductors,A_(2)Cr_(3)As_(3)(A=Na,K,Rb and Cs),as well as the validation of our theory have been discussed.