Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are commo...Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are common and particularly problematic with LaCrO_(3) heaters,which can experience significant power fluctuations and even failure due to substantial resistance changes—an issue conventional thyristorcontrolled heating systems cannot effectively manage.To address this limitation,we have developed the Multi-Anvil Stable Temperature controller(MASTer),a high-performance heating system optimized for MAP experiments.MASTer enables precise,high-speed measurement of heating parameters and power output control,incorporating a gentle regulation strategy to enhance stability.It ensures consistent heating across various heater types,including LaCrO_(3),with power fluctuations limited to±0.1 W and temperature fluctuations to within±2℃ in most cases.The design,operating principles,user interface,functionality,and performance of the heating system are discussed in detail.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2225027)the National Key R&D Program of China(Grant No.2023YFA1608902).
文摘Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are common and particularly problematic with LaCrO_(3) heaters,which can experience significant power fluctuations and even failure due to substantial resistance changes—an issue conventional thyristorcontrolled heating systems cannot effectively manage.To address this limitation,we have developed the Multi-Anvil Stable Temperature controller(MASTer),a high-performance heating system optimized for MAP experiments.MASTer enables precise,high-speed measurement of heating parameters and power output control,incorporating a gentle regulation strategy to enhance stability.It ensures consistent heating across various heater types,including LaCrO_(3),with power fluctuations limited to±0.1 W and temperature fluctuations to within±2℃ in most cases.The design,operating principles,user interface,functionality,and performance of the heating system are discussed in detail.