5052 Al and carbon fiber-reinforced polyamide 6 composite(CF-PA6)were jointed via ultrasonic welding with the assistance of temperature compensation device.The effects of the ultrasonic welding time and temperature co...5052 Al and carbon fiber-reinforced polyamide 6 composite(CF-PA6)were jointed via ultrasonic welding with the assistance of temperature compensation device.The effects of the ultrasonic welding time and temperature compensation on the microstructure and mechanical properties of the joints were investigated.Through analysis of the wettability and fluidity of the molten carbon fiber-reinforced thermoplastic composites(CFRTP),the bonding mechanism and failure path of Al/CFRTP were clarified.The results show that under the conditions of temperature compensation of 220°C and welding time of 1500 ms,the joint strength of the two components reaches 2480.4 N,which is 813.6%higher than that of Al/CFRTP components obtained at room temperature.Overall,temperature compensation prolonged the wetting time of molten CFRTP on the aluminum alloy surface.When the fluidity and wettability were coordinated with each other,a high-quality joint was formed.In addition,the ultrasonic welding process of Al/CFRTP mainly relies on“physical adsorption,”“diffusion effect,”and“mechanical locking effect”to achieve sufficient bonding,and the effect of hydrogen bonding is weak.展开更多
The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire mic...The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.展开更多
A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range o...A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.展开更多
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc...In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.展开更多
A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation betw...A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.展开更多
The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software d...The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software design are proposed. The method increases measuring precision and has fairly great practicability.展开更多
In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these...In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.展开更多
In this article,a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity,lower detection limit,and high-temperature stability,achieved through the implementation of a surface micromachining me...In this article,a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity,lower detection limit,and high-temperature stability,achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy.To improve performance,a T-type device with a 1μm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa,which was 2.89 times larger than that(0.38 V/lgPa)of a L-type device with a 100μm gap.Additionally,FEA simulations were conducted,analyzing the influence of heater temperature on sensitivity and the attenuation of sensitivity across varying ambient temperatures.A semi-empirical theoretical mode was derived for performance prediction,demonstrating strong alignment with experimental results,underscoring its effectiveness in compensating for sensitivity attenuation.Building on the foundation,the device’s performance under different ambient temperatures was characterized and effectively compensated in two distinct operational modes:constant temperature mode and constant temperature difference mode(the whole range temperature compensation error can be controlled within 2.5%).Finally,the short-time stability(variation level is approximately 1 mV),noise floor(Vrms=384μV)and detection limit(0.07 Pa@1 Hz)of the device were characterized,confirming its suitability for practical implementation.展开更多
The Duel-Probe-Heat-Pulse(DPHP)ice content sensor can measure the ice content of the soil,but its measurement process is not clear for the disturbance of frozen soil.In this study,the ice content measurement test was ...The Duel-Probe-Heat-Pulse(DPHP)ice content sensor can measure the ice content of the soil,but its measurement process is not clear for the disturbance of frozen soil.In this study,the ice content measurement test was carried out for silty clay specimens.Firstly,the influence of heating power was clarified.The variation trends of the temperature rise relaxation area in the respective conditions of the three representative volumetric water content specimens and the degree of compaction of the specimen preparation was compared.Then,the influence of five kinds of heating interval time on the measurement accuracy was explored.Finally,the compensation and analysis method of the temperature relaxation area,based on the temperature of the measuring point and the phase change of ice water,is proposed.The experimental results show that:(1)There is a hysteresis in the temperature rise curve of the probe of the DPHP ice content sensor.In the measurement process,a long enough integral in-terval should be selected to calculate the temperature relaxation area.(2)For the specimens with the same initial water content,the measured temperature relaxation area increases with the increase of compaction degree,and this trend weakens in the specimens with the increase of water content.(3)The DPHP ice content sensor causes irreversible disturbance to the soil during the measurement process.The temperature relaxation area,obtained by continuous measurement at a short heating interval,is small,and manifests a decreasing trend with the increase of measurement times.(4)It is recommended that the heating interval time should be more than 120 min,and the temperature relaxation area should be compensated when the continuous measurement of short heating interval time is carried out,to offset the influence of the temperature rise of the measuring point.The research results reveals the influence of multiple factors on the measurement of DPHP ice content sensors,which can provide a basis for the accuracy of soil ice content measurement.展开更多
Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The pla...Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.展开更多
During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and...During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and so on. The FBG itself is sensitive to axial strain and temperature variation directly and can indirectly measure these complex physical parameters, such as pressure, displacement, and vibration, by using some specially designed elastic structures to convert them into the axial strain of the FBG. Whether the FBG is fixed on the measured object to measure the strain directly or fixed on an elastic structure body to measure other physical quantities, these types of FBGs could be collectively called as strain sensing FBGs. The packaging of the FBG has important influence on FBG characteristics that directly affect the measurement accuracy, such as strain transfer, temperature characteristic, and spectral shape. This paper summarizes the packaging methods and corresponding temperature compensation methods of the currently reported strain sensing FBGs, focusing especially on fully pasted FBG, pre-stretched FBG with double-end fixed, and metallic packaging. Furthermore, the advantages and drawbacks of different packaging methods have been analyzed, which can provide a reference for future researches.展开更多
The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional...The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot ad- dress the l/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the l/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/℃. The combined approach could be useful for many other closed-loop accelerometers.展开更多
A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound fi...A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound film, and specific cladding air holes are infiltrated into the liquid material to form new defective channels. The proposed sensor can achieve accurate measurement of methane concentration through temperature compensation. The sensitivity can reach to 20.07nm/% with a high linearity as the methane concentration is within the range of 0%-3.5% by volume. The proposed methane sensor can not only improve the measurement accuracy, but also reduce the metrical difficulty and simplify the process.展开更多
Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electro...Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electromagnetic interference,and afield measurement via the fiber network.However,the fiber-optic based sensor may bear the temperature cross-talk,especially under the warming condition for bio-activating the immune molecules.In this study,we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation.The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser.The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity.The dual reso-nances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities,allowing the temperature-compensational RI sensing.The human immunoglobulin G(IgG)molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule.The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity.展开更多
Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correla...Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correlation analysis method,which analyzes the relationship between the startup drift of the RLG and the temperature change,is used to determine the significant temperature-related terms during gyroscope startup.Based on the significant temperature-related terms and the startup time length,a startup drift compensation model for RLG based on monotonicity-constrained Radial Basis Function(RBF)neural network is proposed and validated.Compared with the raw RLG data without compensation,the standard deviation of the RLG output with the proposed constrained RBF network model is decreased by more than 46%,and the peak-to-peak value is decreased by more than 35%.Compared with the traditional multiple regression model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 10%and 6%,respectively.Compared with the common RBF network model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 8%and 3%,respectively.Navigation experiments also validate the effectiveness of the compensation model.展开更多
A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented.The simple compensation circuit is composed of one GaAs HBT and five resistors with vario...A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented.The simple compensation circuit is composed of one GaAs HBT and five resistors with various values,which allow the power amplifier to achieve better thermal characteristics with a little degradation in performance.It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current.The temperature compensation circuit is applied to a 3-stage integrated power amplifier for wireless communication applications,which results in an improvement in the gain variation from 4.0 to 1.1 dB in the temperature range between -20 and +80℃.展开更多
Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper te...Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF/√H capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/℃ after optimized compensation.展开更多
A resistorless CMOS current reference is presented.Temperature compensation is achieved by subtracting two sub-currents with different positive temperature coefficients.The circuit has been implemented with a Chartere...A resistorless CMOS current reference is presented.Temperature compensation is achieved by subtracting two sub-currents with different positive temperature coefficients.The circuit has been implemented with a Chartered0.35μm CMOS process.The output current is 1.5μA,and the circuit works properly with a supply voltage down to 2 V.Measurement results show that the temperature coefficient is 98 ppm/℃,and the line regulation is 0.45%/V.The occupied chip area is 0.065 mm;.展开更多
MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,i...MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,it is significantly to accurately identify the temperature compensation model in this paper,the calibration parameters were first extracted by using the fast calibration algorithm based on the Persistent Excitation Signal Criterion,and then,MEMS gyro temperature compensation model was established by utilizing the thin plate spline interpolation method,and the corresponding identification results were compared with the results from the polynomial fitting method.The effectiveness of the proposed algorithm has been validated through the comparative experiment.展开更多
Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters ...Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52275360 and 52075360).
文摘5052 Al and carbon fiber-reinforced polyamide 6 composite(CF-PA6)were jointed via ultrasonic welding with the assistance of temperature compensation device.The effects of the ultrasonic welding time and temperature compensation on the microstructure and mechanical properties of the joints were investigated.Through analysis of the wettability and fluidity of the molten carbon fiber-reinforced thermoplastic composites(CFRTP),the bonding mechanism and failure path of Al/CFRTP were clarified.The results show that under the conditions of temperature compensation of 220°C and welding time of 1500 ms,the joint strength of the two components reaches 2480.4 N,which is 813.6%higher than that of Al/CFRTP components obtained at room temperature.Overall,temperature compensation prolonged the wetting time of molten CFRTP on the aluminum alloy surface.When the fluidity and wettability were coordinated with each other,a high-quality joint was formed.In addition,the ultrasonic welding process of Al/CFRTP mainly relies on“physical adsorption,”“diffusion effect,”and“mechanical locking effect”to achieve sufficient bonding,and the effect of hydrogen bonding is weak.
基金The National High Technology Research and Development Program of China (863 Program)(No.2002AA812038)the NationalNatural Science Foundation of China (No.60974116)
文摘The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.
文摘A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA110903)Jilin Key Scientific and Technological Project(20170204085GX)Jilin Industrial Technology Innovation Strategic Alliance Program(20150309013GX)
文摘In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve.
文摘A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.
文摘The temperature characteristic of sensor probe at high voltage side is analyzed by using a photoelectric coupling current transducer. The principle of symmetric temperature compensation and the main idea of software design are proposed. The method increases measuring precision and has fairly great practicability.
文摘In recent years,a large number of small volume,low cost micro electro mechanical systems(MEMS)digital three-axis angular rate gyroscopes have been developed and widely used in civil and military fields.However,these kinds of gyroscopes have poor performances in initial zero-bias,temperature drift,In-Run bias stability,bias repeatability,etc.,their output errors need to be compensated before being used.Based on a lot of experiments,the temperature drift and the initial zero-bias are the major error sources in the MEMS gyroscopes output data.Due to the poor repeatability of temperature drift,the temperature compensation coefficients need to be recalculated every time before using.In order to recalculate parameters of the temperature compensation model quickly,a 1st-order polynomial model of temperature is established,then a forgetting factor recursive least squares estimator will be adopted to identify the model parameters in real time.Static and dynamic experimental data shows that this method removed/compensated the temperature drift and initial zero-bias from the output of the gyroscopes effectively.
基金funded by the National Natural Science Foundation of China(62304023)partially funded by the National Key R&D Program of China(2023YFB3507300)+1 种基金Natural Science Foundation of Chongqing(2022NSCQ-MSX5423)Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-202206004).
文摘In this article,a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity,lower detection limit,and high-temperature stability,achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy.To improve performance,a T-type device with a 1μm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa,which was 2.89 times larger than that(0.38 V/lgPa)of a L-type device with a 100μm gap.Additionally,FEA simulations were conducted,analyzing the influence of heater temperature on sensitivity and the attenuation of sensitivity across varying ambient temperatures.A semi-empirical theoretical mode was derived for performance prediction,demonstrating strong alignment with experimental results,underscoring its effectiveness in compensating for sensitivity attenuation.Building on the foundation,the device’s performance under different ambient temperatures was characterized and effectively compensated in two distinct operational modes:constant temperature mode and constant temperature difference mode(the whole range temperature compensation error can be controlled within 2.5%).Finally,the short-time stability(variation level is approximately 1 mV),noise floor(Vrms=384μV)and detection limit(0.07 Pa@1 Hz)of the device were characterized,confirming its suitability for practical implementation.
基金supported by the Beijing Natural Science Founda-tion(No.8242017)the Fundamental Research Funds for the Central Universities(2024YJS056).
文摘The Duel-Probe-Heat-Pulse(DPHP)ice content sensor can measure the ice content of the soil,but its measurement process is not clear for the disturbance of frozen soil.In this study,the ice content measurement test was carried out for silty clay specimens.Firstly,the influence of heating power was clarified.The variation trends of the temperature rise relaxation area in the respective conditions of the three representative volumetric water content specimens and the degree of compaction of the specimen preparation was compared.Then,the influence of five kinds of heating interval time on the measurement accuracy was explored.Finally,the compensation and analysis method of the temperature relaxation area,based on the temperature of the measuring point and the phase change of ice water,is proposed.The experimental results show that:(1)There is a hysteresis in the temperature rise curve of the probe of the DPHP ice content sensor.In the measurement process,a long enough integral in-terval should be selected to calculate the temperature relaxation area.(2)For the specimens with the same initial water content,the measured temperature relaxation area increases with the increase of compaction degree,and this trend weakens in the specimens with the increase of water content.(3)The DPHP ice content sensor causes irreversible disturbance to the soil during the measurement process.The temperature relaxation area,obtained by continuous measurement at a short heating interval,is small,and manifests a decreasing trend with the increase of measurement times.(4)It is recommended that the heating interval time should be more than 120 min,and the temperature relaxation area should be compensated when the continuous measurement of short heating interval time is carried out,to offset the influence of the temperature rise of the measuring point.The research results reveals the influence of multiple factors on the measurement of DPHP ice content sensors,which can provide a basis for the accuracy of soil ice content measurement.
文摘Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
基金This paper was partially supported by the Natural Science Foundation of China under Grant No. 51605348, the Natural Science Foundation of Hubei province under Grants No. 2016CFB116, and the Project of China Postdoctoral Science Foundation under Grant No. 2015M572208.
文摘During last decades, sensor elements based on the fiber Bragg grating (FBG) have been widely studied and developed due to the advantages of immunity to electromagnetic interference, compact size, high precision, and so on. The FBG itself is sensitive to axial strain and temperature variation directly and can indirectly measure these complex physical parameters, such as pressure, displacement, and vibration, by using some specially designed elastic structures to convert them into the axial strain of the FBG. Whether the FBG is fixed on the measured object to measure the strain directly or fixed on an elastic structure body to measure other physical quantities, these types of FBGs could be collectively called as strain sensing FBGs. The packaging of the FBG has important influence on FBG characteristics that directly affect the measurement accuracy, such as strain transfer, temperature characteristic, and spectral shape. This paper summarizes the packaging methods and corresponding temperature compensation methods of the currently reported strain sensing FBGs, focusing especially on fully pasted FBG, pre-stretched FBG with double-end fixed, and metallic packaging. Furthermore, the advantages and drawbacks of different packaging methods have been analyzed, which can provide a reference for future researches.
文摘The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the l/f noise and the tem- perature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot ad- dress the l/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the l/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/℃. The combined approach could be useful for many other closed-loop accelerometers.
基金the National Key R&D Program of China under Grant No.2016YFC0801800National Natural Science Foundation of China under Grant No.51874301+1 种基金Science and Technology Innovation Project of Xuzhou City under Grant No.KC16SG264the Special Foundation for Excellent Young Teachers and Principals Program of Jiangsu Province,China.
文摘A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound film, and specific cladding air holes are infiltrated into the liquid material to form new defective channels. The proposed sensor can achieve accurate measurement of methane concentration through temperature compensation. The sensitivity can reach to 20.07nm/% with a high linearity as the methane concentration is within the range of 0%-3.5% by volume. The proposed methane sensor can not only improve the measurement accuracy, but also reduce the metrical difficulty and simplify the process.
基金supported by National Natural Science Foundation of China(61775082,U1701268,61405074,61805106)Guangdong Natural Science Foundation(2015A030313324,2018A030313677)+2 种基金the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2019BT02X105)Youth Top-notch Scientific and Technological Innovation Talent of Guangdong Special Support Plan(2019TQ05X136)the Fundamental Research Funds for the Central Universities.
文摘Immunosensor is a powerful tool in healthcare and clinic,food and drug industry,and environmental protection.Label-free fiber-optic immunosensors have shown a myriad of advantages,such as high sensitivity,anti-electromagnetic interference,and afield measurement via the fiber network.However,the fiber-optic based sensor may bear the temperature cross-talk,especially under the warming condition for bio-activating the immune molecules.In this study,we proposed a highly birefringent microfiber Bragg grating for immunosensing with the temperature-compensation.The birefringent microfiber was drawn from the elliptical cladding multimode fiber that was ablated by the CO2 laser.The considerably large energy overlap region offered by the original multimode fiber favored the efficient inscription of FBG with high reflectivity.The dual reso-nances derived by the orthogonal polarization states presented similar temperature responsivities but significantly different ambient refractive index sensitivities,allowing the temperature-compensational RI sensing.The human immunoglobulin G(IgG)molecules were anchored on the surface of the microfiber grating probe by the covalent functionalization technique to enable the specific detection of the anti-IgG molecule.The proposed method promises a high-efficiency and low-cost design for the microfiber Bragg grating-based biosensor without being subjected to the temperature cross-sensitivity.
基金supported in part by the National Natural Science Foundation of China(No.61203199)。
文摘Serious startup drift of the Ring Laser Gyroscope(RLG)is observed during cold startup process,which will dramatically degrade the performances of the corresponding Inertial Navigation System(INS).In this paper,correlation analysis method,which analyzes the relationship between the startup drift of the RLG and the temperature change,is used to determine the significant temperature-related terms during gyroscope startup.Based on the significant temperature-related terms and the startup time length,a startup drift compensation model for RLG based on monotonicity-constrained Radial Basis Function(RBF)neural network is proposed and validated.Compared with the raw RLG data without compensation,the standard deviation of the RLG output with the proposed constrained RBF network model is decreased by more than 46%,and the peak-to-peak value is decreased by more than 35%.Compared with the traditional multiple regression model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 10%and 6%,respectively.Compared with the common RBF network model,the standard deviation and peak-to-peak value of the RLG output are decreased by more than 8%and 3%,respectively.Navigation experiments also validate the effectiveness of the compensation model.
基金Project supported by the Breakthroughs in Key Areas of Guangdong and Hong Kong Project(No.2008A010100012)
文摘A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented.The simple compensation circuit is composed of one GaAs HBT and five resistors with various values,which allow the power amplifier to achieve better thermal characteristics with a little degradation in performance.It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current.The temperature compensation circuit is applied to a 3-stage integrated power amplifier for wireless communication applications,which results in an improvement in the gain variation from 4.0 to 1.1 dB in the temperature range between -20 and +80℃.
基金supported by the National Natural Science Foundation of China(No.61106025)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Abstract: This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF/√H capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/℃ after optimized compensation.
基金Project supported by the National High Technology Research and Development Program of China(No.2009AA011607)
文摘A resistorless CMOS current reference is presented.Temperature compensation is achieved by subtracting two sub-currents with different positive temperature coefficients.The circuit has been implemented with a Chartered0.35μm CMOS process.The output current is 1.5μA,and the circuit works properly with a supply voltage down to 2 V.Measurement results show that the temperature coefficient is 98 ppm/℃,and the line regulation is 0.45%/V.The occupied chip area is 0.065 mm;.
文摘MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,it is significantly to accurately identify the temperature compensation model in this paper,the calibration parameters were first extracted by using the fast calibration algorithm based on the Persistent Excitation Signal Criterion,and then,MEMS gyro temperature compensation model was established by utilizing the thin plate spline interpolation method,and the corresponding identification results were compared with the results from the polynomial fitting method.The effectiveness of the proposed algorithm has been validated through the comparative experiment.
基金funded by the Project of Liaoning Education Department (No.LJKMZ20220500)the Natural Sciences Foundation of Liaoning province (Grant No.20230157)+1 种基金the National Natural Science Foundation of China (No.21976124)the Liaoning Revitalization Talents Program (No.XLYC2007195)。
文摘Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.