期刊文献+
共找到18,903篇文章
< 1 2 250 >
每页显示 20 50 100
Front margin tectonic deformation characteristics of the Xu-Su arc tectonic belt and its tectonic implications
1
作者 Zheng Rong-ying Yao Yun-sheng +8 位作者 Shen Jun He Hao-yuan Guo Chun-shan Yu Xiao-hui Dai Xun-ye Li Lu-wei Jiao Xuan-kai Yu Zhong-yuan Gao Zhi-tao 《Applied Geophysics》 2025年第3期784-795,896,共13页
The investigation of the tectonic deformation characteristics at the front margin of the Xu-Su arc tectonic belt provides important reference points for identifying and analyzing its genetic mechanism,tectonic evoluti... The investigation of the tectonic deformation characteristics at the front margin of the Xu-Su arc tectonic belt provides important reference points for identifying and analyzing its genetic mechanism,tectonic evolution process,and the latest evidence of tectonic deformation.In this study,two reflection seismic exploration profiles across the front margin of the Xu-Su arc tectonic belt are utilized to reveal that the Qinglongshan fault is the thrust fault of its front margin boundary.The kinematic properties and tectonic deformation characteristics of the internal faults in the front margin basin are also obtained.Using the Qinglongshan fault as the boundary,the middle and posterior margins of the Xu-Su arc tectonic belt are composed of numerous thrust faults,which suggest strong ancient tectonic movement.However,a large number of normal faults are developed within the front margin basin,with some faults exhibiting strike-slip and growth properties,which indicate strong neotectonic movement.Results reveal that the Xu-Su arc tectonic belt is a large-scale thrust-nappe structure that has undergone structural inversion.The Xu-Su arc tectonic belt experienced strong tectonic activity during the Middle Pleistocene,and the most recent tectonic deformation has extended into the front margin basin interior. 展开更多
关键词 Xu-Su arc tectonic belt tectonic deformation reflective seismic exploration thrust-nappe structure structural inversion
在线阅读 下载PDF
Exploration of structural,magnetic,and magnetocaloric characteristics of double perovskites HoRCoMnO_(6)(R=Ho,Gd,Eu or Nd)
2
作者 O.El Oujihi L.H.Omari +2 位作者 A.Hajji A.Tizliouine E.Dhahri 《Journal of Rare Earths》 2025年第4期743-751,I0004,共10页
A conventional solid-state process was used to synthesize the double perovskite materials HoRCoMnO_(6)(R=Ho,Gd,Eu,Nd).The structural properties of the compounds were investigated using X-ray powder diffraction(XRD).Th... A conventional solid-state process was used to synthesize the double perovskite materials HoRCoMnO_(6)(R=Ho,Gd,Eu,Nd).The structural properties of the compounds were investigated using X-ray powder diffraction(XRD).The results revealed that Ho_(2)CoMnO_(6) crystallizes in a monoclinic structure with the P2_(1)/n space group.In contrast,the other compounds HoRCoMnO_(6)(R=Gd,Eu,or Nd) exhibit an orthorhombic structure with the Pnma space group.As a result,the average crystallite size also changes as a function of rare-earth element doping.This investigation reveals that the magnetic properties of the compounds studied are significantly dependent on the doping elements.The Curie temperature T_C,for example,increases from 80 to 118℃ with the ionic radii of rare earths increasing.Furthermore,the study of the magnetocaloric effect(MCE) shows that the maximum of the entropy variation(-ΔS_(M)^(max)) increases from 4.97 to 6.06 J/(kg·K) under a magnetic field of 5 T with substitution by rare-earth ions.To examine the efficiency of MCE materials,the relative cooling power(RCP) was evaluated and is found to increase with increment of rare-earth radius till 406.69 J/kg for Nd.The mean entropy variation with tempe rature(TEC) was also studied.Due to their significant magnetocaloric performance,HoRCoMnO_(6)(noted as HRCMO) compounds(with R=Ho,Gd,Eu or Nd) could be good candidates for low-temperature magnetic cooling applications. 展开更多
关键词 Double perovskite structural propriety Magnetic characteristics Rare earth compounds Magneto-caloric effect
原文传递
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
3
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
Dynamic Characteristic Analysis and Structural Optimization of Entire Double-Shaft-Driven Needle Punching Machine for C/C Crucible Preforms
4
作者 SUN Zhihong DENG Qicai +4 位作者 QU Zhiyang WANG Zhenxi WANG Bing ZHANG Xi ZHANG Jingzhang 《Journal of Donghua University(English Edition)》 2025年第4期399-408,共10页
Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The... Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The intense vibration during needle punching not only generates huge noise,but also substantially reduces the quality of the preform.It is imperative to perform a dynamic analysis and optimization of the entire needle punching machine.In this paper,the three-dimensional(3D)model of the entire double-shaft-driven needle punching machine for C/C crucible preforms is established.Based on the modal analysis theory,the modal characteristics of the needle punching machine under various operating conditions are analyzed and its natural frequencies and vibration modes are determined.The harmonic response analysis is then employed to obtain the amplitude of the needle plate at different frequencies,and the structural weak points of the needle punching machine are identified and improved.The feasibility of the optimized scheme is subsequently reevaluated and verified.The results indicate that the first six natural frequencies of the machine increase,and the maximum amplitude of the needle plate decreases by 70.3%.The enhanced dynamic characteristics of the machine significantly improve its performance,enabling more efficient needle punching of C/C crucible preforms. 展开更多
关键词 needle punching machine dynamic characteristic modal analysis harmonic response analysis structural optimization
在线阅读 下载PDF
Structural characteristics of faults in Wangfu fault depression and their control on coal-rock gas enrichment,Songliao Basin,NE China
5
作者 SUN Yonghe LIU Yumin TIAN Wenguang 《Petroleum Exploration and Development》 2025年第3期649-662,共14页
Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods... Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods of the coal-bearing formations were determined,and the fault systems were divided.Combined with the coal seam thickness and actual gas indication in logging,the controls of fault systems in the rift basin on the spatial distribution of coal and the occurrence of coal-rock gas were identified.The results show that the Wangfu fault depression is an asymmetrical graben formed under the control of basement reactivated strike-slip T-rupture,and contains coal-bearing formations and five sub-types of fault systems under three types.The horizontal extension strength,vertical activity strength and tectono-sedimentary filling difference of basement faults control vertical stratigraphic sequences,accumulation intensity,and accumulation frequency of coal seam in rift basin.The structural transfer zone formed during the segmented reactivation and growth of the basement faults controls the injection location of steep slope exogenous clasts.The filling effect induced by igneous intrusion accelerates the sediment filling process in the rift lacustrine area.The structural transfer zone and igneous intrusion together determine the preferential accumulation location of coal seams in the plane.The faults reactivated at the basement and newly formed during the rifting phase serve as pathways connecting to the gas source,affecting the enrichment degree of coal-rock gas.The vertical sealing of the faults was evaluated by using shale smear factor(SSF),and the evaluation criterion was established.It is indicated that the SSF is below 1.1 in major coal areas,indicating favorable preservation conditions for coal-rock gas.Based on the influence factors such as fault activity,segmentation and sealing,the coal-rock gas accumulation model of rift basin was established. 展开更多
关键词 coal-rock gas rift basin Songliao Basin Wangfu fault depression structural characteristics fault system basement fault reactivation CRETACEOUS coal accumulation law accumulation model
在线阅读 下载PDF
The characteristics of tectonic stress field about strike slip earthquake-generating structure in the Chinese mainland 被引量:2
6
作者 环文林 汪素云 宋昭仪 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第4期567-575,共9页
This paper is one of the series papers about the study on strike-slip earthquake-generating structure in the Chinese mainland. In the first part of this paper, based on the large amount of data from large earthquake i... This paper is one of the series papers about the study on strike-slip earthquake-generating structure in the Chinese mainland. In the first part of this paper, based on the large amount of data from large earthquake investigation and the latest results of focal mechanism, the earthquake-generating structure in the Chinese mainland interior and its neighbouring region is discussed. It is concluded that the absolutely predominated earthquake, not only in number, but also in intensity, as well as in distributing area, is strike slip earthquake, and it is further stressed that the study on the strike slip earthquake-generating structure is significant for seismic risk analysis. In the second part, the characteristics of tectonic stress field about strike slip earthquake-generating structure and the compiled distribution outline of strike slip earthquake-generating fault, normal fault, and thrust fault in the Chinese mainland interior and its neighbouring region, in the light of stress characteristics of fault plane solutions, are also discussed. 展开更多
关键词 earthquake generating structure tectonic stress field strike slip earthquake
在线阅读 下载PDF
Three-dimensional velocity structure and tectonic characteristics of earthquake area in Yibin 被引量:1
7
作者 Ma Yong Bi Jin-Meng and Gao Lei 《Applied Geophysics》 SCIE CSCD 2019年第3期267-276,394,共11页
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par... In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity. 展开更多
关键词 Yibin area double-difference tomography method 3D P・wave and S・wave velocity structure structural characteristics
在线阅读 下载PDF
Diagnostic Study on the Structural Characteristics of a Typical Mei-yu Front System and Its Maintenance Mechanism 被引量:23
8
作者 JIANG Jianying(蒋建莹) +1 位作者 NI Yunqi(倪允琪) 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期802-813,共12页
In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-theta(e) dense area with stro... In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-theta(e) dense area with strong horizontal gradient, a deep-convective cloud tower band, a passageway transporting warm and moist air flow from the summer monsoon surge in the mid and low levels to the south of the mei-yu front, and a migrating synoptic scale trough to the north of the mei-yu front, which transports cold and dry air southward in the mid and upper levels. The maintenance of the mei-yu front is realized by: (1) is a positive feedback between the moist physical process enhancing frontogenesis and the development of the strong convective system in front of the mei-yu front; (2) the sustaining system to the north of the mei-yu front which is a migrating synoptic scale trough transporting cold and dry air to the mei-yu front and positive vorticity to the mesoscale system in front of the mei-yu front. 展开更多
关键词 mei-yu front structural characteristics maintenance mechanism moist physical process
在线阅读 下载PDF
Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals 被引量:45
9
作者 Yiwen Ju Kray Luxbacher +4 位作者 Xiaoshi Li Guochang Wang Zhifeng Yan Mingming Wei Liye Yu 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期364-375,共12页
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p... The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from wrinkle structure coal of low ductile deformation and later superimposed by brittle deformation.Other kinds of TDC suffering from strong brittle-ductile and ductile deformation,such as scale structure coal and mylonitic structure coal,are difficult problems to resolve. 展开更多
关键词 tectonically deformed coals Formation mechanisms Macromolecular structure Pore structure Micro-structured evolution Coal bed methane
在线阅读 下载PDF
Hydration mechanism and microstructure characteristics of modified magnesium slag alkali-activated coal-fired slag based cementitious materials
10
作者 SUN Wei-ji LIU Lang +4 位作者 ZHAO Yuan-yuan FANG Zhi-yu LYU Yong-zhe XIE Geng SHAO Cheng-cheng 《Journal of Central South University》 2025年第6期2148-2169,共22页
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value... As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling. 展开更多
关键词 coal-fired slag ALKALI-ACTIVATED hydration characteristics pore structure composite cementitious material
在线阅读 下载PDF
In-Situ Study on the Effect of Gas Stove Structure on Flame Combustion Characteristics Based on Spectral Diagnosis
11
作者 Jin Feng Juntao Wei +6 位作者 Yuanyuan Jing Xudong Song Zhengdong Gu YonghuiBai Manoj Kumar Jena Weiguang Su Guangsuo Yu 《Energy Engineering》 2025年第7期2637-2652,共16页
This study systematically investigated the effects of different gas stove structures on flame combustion characteristics using spectral diagnostic techniques,aiming to provide optimized design guidelines for clean ene... This study systematically investigated the effects of different gas stove structures on flame combustion characteristics using spectral diagnostic techniques,aiming to provide optimized design guidelines for clean energy applications.To explore the combustion behaviors of various gas stove structures,UV cameras,high-speed cameras,and K-type thermocouples were employed to measure parameters such as flame OH radicals(OH*),flame morphology,pulsation frequency,flame temperature,and heat flux.The results demonstrate that flame stability was achieved at an inner/outer cover flow rate ratio of 0.5/4.0 L/min,beyond which further flow rate increases led to reduced combustion efficiency.Compared to covered stoves,top-uncovered stove exhibited 5.5%and 12.4%higher temperatures at the inner and outer covers,respectively,along with a 35%increase in heat flux.Comprehensive analysis revealed an approximately 20%enhancement in overall flame intensity.The experimental results show that top-uncovered gas stoves exhibit higher flame intensity,greater combustion efficiency,and overall higher stove efficiency.In contrast,covered gas stoves feature a more controllable and stable flame with a gentler temperature rise.This study underscores the importance of optimizing gas stove designs to enhance combustion efficiency and reduce emissions,contributing to the transition from fossil fuels to renewable energy sources and promoting sustainable development. 展开更多
关键词 Stove structure spectral diagnostics flame pulsation frequency combustion characteristics
在线阅读 下载PDF
Late Mesozoic Tectonic Evolution of Southwestern Fujian Province,South China:Constraints from Magnetic Fabric,Zircon U-Pb Geochronology and Structural Deformation 被引量:5
12
作者 Sen Wang Da Zhang +7 位作者 Ganguo Wu Xingjian Li Xiaoqiao Gao Absai Vatuva Yuan Yuan Tengda Yu Yu Bai Ye Fang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第2期391-407,共17页
A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China,... A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension. 展开更多
关键词 tectonic evolution magnetic fabric U-Pb dating structural deformation southwestern Fujian.
原文传递
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
13
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Tectonic Evolution and Geological Characteristics of Hydrocarbon Reservoirs in Marine Mesozoic-Paleozoic Strata in the South Yellow Sea Basin 被引量:14
14
作者 YUAN Yong CHEN Jianwen +3 位作者 ZHANG Yuxi LIANG Jie ZHANG Yinguo ZHANG Penghui 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1075-1090,共16页
The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor... The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential. 展开更多
关键词 South Yellow Sea Basin tectonic evolution HYDROCARBON geological characteristics marine Mesozoic-Paleozoic strata
在线阅读 下载PDF
Petrographic Characteristics and Pore Structure Analysis of Benxi Formation Sandstone Reservoirs in the Yanchuan East Block,Ordos Basin
15
作者 Qiyu Gao Meng Wang +1 位作者 Tianchao Guo Xiao Yang 《Journal of Geoscience and Environment Protection》 2025年第11期88-110,共23页
This study investigates the Benxi Formation sandstone reservoirs in the Yanchuan East Block of the Ordos Basin,employing an integrated approach that includes core observation,thin-section analysis,scanning electron mi... This study investigates the Benxi Formation sandstone reservoirs in the Yanchuan East Block of the Ordos Basin,employing an integrated approach that includes core observation,thin-section analysis,scanning electron microscopy,high-pressure mercury intrusion,and petrophysical testing to systematically evaluate reservoir petrographic features and pore structures.Results reveal that Benxi Formation sandstones predominantly comprise quartz sandstones,lithic quartz sandstones,and lithic sandstones,characterized by high quartz content,widespread volcanic lithic fragments,moderately well-sorted grains,and complex cement types.Pore types are dominated by residual intergranular and dissolution pores,with minor intracrystalline pores and fractures;overall porosity ranges from 0.17%to 9.07%(average 4.74%),and permeability from 0.01 to 6.05 mD,classifying them as ultra-low porosity and tight reservoirs.High-pressure mercury intrusion indicates microfine throats as the primary structure,divisible into four distinct types.Diagenetically,compaction and cementation are the main drivers of primary pore loss and reservoir tightening,whereas late-stage dissolution partially ameliorates pore networks.Overall,Benxi Formation sandstone reservoirs exhibit pervasive densification but localized favorable pore assemblages and connectivity,facilitating hydrocarbon migration and accumulation.These findings advance understanding of Upper Paleozoic tight sandstone reservoir characteristics and aid in predicting sweet spots. 展开更多
关键词 Ordos Basin Yanchuan East Block Benxi Formation Sandstone Reservoir Petrographic characteristics Pore structure DIAGENESIS
在线阅读 下载PDF
Solidification microstructure and heat deformation characteristics of hard-to-deform superalloy GH4151
16
作者 Shuai Ren Shao-min Lyu +3 位作者 Xing-fei Xie Wei-xue Hou Jing-long Qu Jin-hui Du 《Journal of Iron and Steel Research International》 2025年第11期4068-4086,共19页
Upon approaching 850℃,the GH4151 alloy exhibits diminished high-temperature strength,primarily attributed to the disruption of γ′phase coherence at elevated temperatures,which reduces its strengthening contribution... Upon approaching 850℃,the GH4151 alloy exhibits diminished high-temperature strength,primarily attributed to the disruption of γ′phase coherence at elevated temperatures,which reduces its strengthening contribution.Tantalum(Ta)additions enhance the stability of the γ′phase but introduce processing challenges,including pronounced solidification segregation,the formation of secondary phases,and increased susceptibility to cracking during processing.The influence of Ta content on elemental segregation,solidification microstructure,phase precipitation kinetics,and hot deformation behaviour in GH4151 was systematically investigated.Processing windows derived from the dynamic materials model(DMM)and microstructural evolution under varying thermomechanical conditions are further examined.Key findings reveal the severe Ta segregation(segregation coefficient K≈1.608);Ta promotes γ/γ′eutectic and η phase formation,increasing γ′phase volume fraction from 54% to approximately 63%;and increased Ta content elevates flow stress and progressively narrows the DMM-defined processing window;optimized thermomechanical processing parameters(elevated temperatures and strain rates)enhance recrystallization kinetics and hot workability,thereby mitigating cracking propensity. 展开更多
关键词 Ta content GH4151 alloy Solidification structure characteristic Elemental segregation Heat distortion behaviour
原文传递
Advances in Structural Geology and Tectonics in the Late 20th Century: A Review 被引量:3
17
作者 DONG Shuwen ZHENG Yadong +1 位作者 CHEN Xuanhua SHI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期349-375,共27页
Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years... Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years) document counts of various topics in structural geology and tectonics, the position of structural geology and tectonics in the geosciences is evaluated and the major advaces in fields of plate tectonics, continental dynamics and global dynamics are reviewed. Our attention mainly focuses on the advances in studies of structural analysis, deformation mechanisms and rheology of rocks, contractional tectonics and late- and post-orogenic extensional collapse in orogens, large-scale strikeslip faults and indentation-extrusion tectonics, active tectonics and natural hazards. The relationships of structural geology and tectonics with petrology and geochronology are also discussed in terms of intersection of scientific disciplines. Finally, some suggestions are proposed for the further development of structural geology and tectonics in China. 展开更多
关键词 plate tectonics RHEOLOGY structural geology continental dynamics document statistics
在线阅读 下载PDF
Locking Effect of the Inhomogeneous Tectonic Lenticular Rock Mass in the Internal Geological Structure of the Baige Landslides
18
作者 Peng Cao Huiming Tang +3 位作者 Kun Fang Jianhui Deng Zongliang Li Xinming Wu 《Journal of Earth Science》 2025年第4期1663-1681,共19页
In 2018,Baige,Xizang,witnessed two consecutive large-scale landslides,causing significant damage and drawing widespread attention.From March 2011 to February 2018,the Baige landslide exhibited a 50-m displacement with... In 2018,Baige,Xizang,witnessed two consecutive large-scale landslides,causing significant damage and drawing widespread attention.From March 2011 to February 2018,the Baige landslide exhibited a 50-m displacement without complete failure,culminating in a collapse in October 2018.The mechanisms behind its resistance to failure despite substantial deformation and the influence of the complex geo-structure within the tectonic mélange belt remain unclear.To address these questions,this study utilized a multidisciplinary approach,integrating on-site geological field mapping,surface deformation monitoring,multielectrode resistivity method,and deep displacement analysis.The aim was to evaluate the impact of the intricate geo-structure within the tectonic mélange belt on the Baige landslide events.Findings reveal that the landslide's geo-structure consists of structurally fractured,mesh-like rock masses,including heterogeneous lenticular rock masses and intermittent brittle shear zones distributed around the lens-shaped rock masses.The study underscores that the inhomogeneous and weakly deformed lenticular rock masses function as natural locked segments,governing the stability of the Baige landslide.Specifically,the relatively intact and hard granodiorite porphyry play a crucial role in locking the landslide's deformation.Deep displacement analysis indicates that the brittle shear zones act as the sliding surfaces.The progressive destruction of the locked segments and the gradual penetration of brittle shear zones,driven by gravitational potential energy,contribute to the landslide occurrence.This research provides critical insights into the formation mechanisms of large-scale landslides within tectonic mélange belts. 展开更多
关键词 Baige landslides Jinsha River tectonic mélange belt internal geological structure macro-meso-micro scales rock mass strength heterogeneity locked effect mechanisms
原文传递
Research on the Structural Rigidity Characteristics of a Reconfigurable TBM Thrust Mechanism 被引量:4
19
作者 Younan Xu Xinjun Liu Jiyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期35-47,共13页
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic... To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM. 展开更多
关键词 Reconfigurable TBM thrust mechanism structural rigidity characteristics Configuration matrix Patternvector Kinematic harmonizing equation Dynamic compatible equation structural stiffness equations
在线阅读 下载PDF
Structural Characteristics of the Andaman Forearc Inferred from Interpretation of Multichannel Seismic Reflection Data 被引量:2
20
作者 Anitha GOLI Dhananjai K.PANDEY 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1145-1156,共12页
The Andaman Forearc Basin (AFB) is asymmetric in configuration and filled with a-6 km-thick pile of Neogene to Recent sediments (-4 s in two-way travel time: TWT) with distinct zonation. It shows gradual thinning... The Andaman Forearc Basin (AFB) is asymmetric in configuration and filled with a-6 km-thick pile of Neogene to Recent sediments (-4 s in two-way travel time: TWT) with distinct zonation. It shows gradual thinning up to -3 km (0.8 s in TWT) towards the eastern end with a seabed gradient of 1:30. Thick deformed sediments -2 s (TWT) of the Outerarc are associated with intense faulting and occasional folding caused by recent tectonics. Development of a series of faults within the upwarped sedimentary column of Oligocene top to Recent is observed with a rotated fault block. These features are manifestations of Recent igneous intrusion, and reveal the presence of a mild N-S compressional regime. Its effect on the AFB resulted in further uplift of sediments, which can now be seen as the Invisible Bank. Forward gravity modelling supporting our seismic interpretation reveals that it is associated with igneous intrusion from the Moho (-9 km depth), and also suggests that continental crust underlies the AFB. Strong Bottom Simulating Reflector (BSR)-like features in the Miocene sediments of Outerarc and Forearc basin at a depth of 0.6 s below the seabed suggest the inferred probable occurrence of gas hydrates in the AFB. 展开更多
关键词 structural geology tectonicS Tertiary hydrocarbon potential upwarp Andaman Indian Ocean
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部