The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in t...The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in the HepG2-sh UC001 kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lnc RNA UC001 kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different m RNAs. The results showed that m RNAs were differentially expressed between the HepG2-sh UC001 kfo cell line and the HepG2 cell line. The UC001 kfo m RNA was significantly down-regulated in the stable cell line HepG2-sh UC001kfo(P〈0.001). Additionally, we found 19 signaling pathways or functional classifications encompassing 30 genes that played a role in cancer characteristics, cell adhesion, invasion and migration. The results also showed that the expression of many genes associated with cancer cell invasion and metastasis was decreased with the down-regulation of the lnc RNA UC001 kfo. Lnc RNA UC001 kfo may play a role in regulating cancer cell invasion and metastasis. It was suggested that m RNAs were differentially expressed in the HepG2 cell line after the down-regulation of lnc RNA-UC001 kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed m RNAs may participate in cell invasion and metastasis.展开更多
The efficient synthesis of dimethylhexane-1,6-dicarbamate(HDC)from 1,6-hexanediamine(HDA)and methyl carbonate over a series of heterogeneous catalysts(e.g.,Mg O,Fe2O3,Mo2O3,and Ce O2)was investigated.The reaction path...The efficient synthesis of dimethylhexane-1,6-dicarbamate(HDC)from 1,6-hexanediamine(HDA)and methyl carbonate over a series of heterogeneous catalysts(e.g.,Mg O,Fe2O3,Mo2O3,and Ce O2)was investigated.The reaction pathway was confirmed as an alcoholysis reaction through a series of designed experiments.Under optimized conditions,100%HDA conversion with 83.1%HDCtotaland 16.9%polyurea was obtained using a onestep with high temperature procedure with Ce O2as the catalyst.A new two-step with variable temperature technology was developed based on the reaction pathway to reduce the polyurea yield.Using the proposed method,the HDCtotalyield reached 95.2%,whereas the polyurea yield decreased to 4.8%.The Ce O2catalyst showed high stability and did not exhibit any observable decrease in the HDC yield or any structural changes after four recycling periods.展开更多
With the intensification of global climate change,carbon neutrality has become a crucial objective for achieving sustainable development,which critically requires systematic technological innovation and collaborative ...With the intensification of global climate change,carbon neutrality has become a crucial objective for achieving sustainable development,which critically requires systematic technological innovation and collaborative cooperation between technologies and countries.Through categorization and comprehensive technological assessments,a thorough examination of relevant technologies can furnish a framework to guide emission reduction efforts across various sectors.This review seeks to explore the methods by which various countries achieve carbon neutrality technology systems and pathways,with an in-depth study of the differences between the technological approaches and systems in China,the United States,and European countries.The construction of technology systems in several countries is reviewed,from the composition of the systems to the assessment of technologies that include indicators such as carbon reduction potential.Building upon an analysis of key technological pathways in renewable energy,carbon capture,utilization and storage,energy efficiency improvement,and hydrogen energy across different countries,a systematic evaluation is conducted from three key dimensions-policy formulation,resource endowment,and industrial foundation-to identify the similarities,differences,and driving factors in the construction of carbon neutrality technology systems among nations.Based on the previous work,we conducted a comparative analysis and summary of carbon neutrality pathways across various countries worldwide,systematically reviewing and evaluating carbon neutrality technologies in power generation,industry,transportation,and building sectors.Building upon these findings,the study offers recommendations for coupling diverse technological approaches and for international cooperation.By comparing international experiences and practices,this study provides operational references for countries in formulating technology planning and emission reduction strategies,and also provides an important basis for deepening global carbon neutral cooperation in the future.展开更多
Wetland ecosystems have become one of the long-term solutions for mitigating global climate change due to their strong carbon sequestration potential.However,the key carbon cycle processes in wetland ecosystems still ...Wetland ecosystems have become one of the long-term solutions for mitigating global climate change due to their strong carbon sequestration potential.However,the key carbon cycle processes in wetland ecosystems still lack a systematic summary.In the context of wetland protection and restoration,there is still a lack of consensus on the technical pathways to realize carbon sink multiplication in wetland ecosystems.In this paper,the key processes of carbon cycle,such as photosynthetic carbon uptake,microbial carbon decomposition and carbon deposition and burial,are sorted out and summarized in four major wetland types,namely,swamp and peat wetlands,river and riparian wetlands,lake and lakeshore wetlands,and estuarine and coastal wetlands.Based on the key processes of carbon cycle,three technological pathways for carbon sink multiplication are proposed,including,vegetation carbon sequestration and sink enhancement technology,soil carbon emission reduction technology and carbon deposition and burial technology.The key technologies under each pathway are further refined.And the carbon sink effects of the carbon sink technologies in different wetland types are qualitatively described.Also,wetland protection and restoration methods in corresponding regions are given in the light of the regional characteristics of wetlands in China.This will provide a scientific basis for the strategy of doubling the carbon sinks of China′s wetland ecosystems.展开更多
基金supported by National Natural Science Foudation of China(No.U1404309)
文摘The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in the HepG2-sh UC001 kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lnc RNA UC001 kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different m RNAs. The results showed that m RNAs were differentially expressed between the HepG2-sh UC001 kfo cell line and the HepG2 cell line. The UC001 kfo m RNA was significantly down-regulated in the stable cell line HepG2-sh UC001kfo(P〈0.001). Additionally, we found 19 signaling pathways or functional classifications encompassing 30 genes that played a role in cancer characteristics, cell adhesion, invasion and migration. The results also showed that the expression of many genes associated with cancer cell invasion and metastasis was decreased with the down-regulation of the lnc RNA UC001 kfo. Lnc RNA UC001 kfo may play a role in regulating cancer cell invasion and metastasis. It was suggested that m RNAs were differentially expressed in the HepG2 cell line after the down-regulation of lnc RNA-UC001 kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed m RNAs may participate in cell invasion and metastasis.
基金Supported by the Science and Technology Ministry of China(2013BAC11B03)National Nature Science Foundation of China(21476244,21206180,21406245)
文摘The efficient synthesis of dimethylhexane-1,6-dicarbamate(HDC)from 1,6-hexanediamine(HDA)and methyl carbonate over a series of heterogeneous catalysts(e.g.,Mg O,Fe2O3,Mo2O3,and Ce O2)was investigated.The reaction pathway was confirmed as an alcoholysis reaction through a series of designed experiments.Under optimized conditions,100%HDA conversion with 83.1%HDCtotaland 16.9%polyurea was obtained using a onestep with high temperature procedure with Ce O2as the catalyst.A new two-step with variable temperature technology was developed based on the reaction pathway to reduce the polyurea yield.Using the proposed method,the HDCtotalyield reached 95.2%,whereas the polyurea yield decreased to 4.8%.The Ce O2catalyst showed high stability and did not exhibit any observable decrease in the HDC yield or any structural changes after four recycling periods.
基金support from the National Key R&D Program of China(Grant No.2023YFE0113000)the National Natural Science Foundation of China(No.52006124)+2 种基金the GuangDong Basic and Applied Basic Research Foundation(No.2023A1515240008)the Beijing Natural Science Foundation No.3232031)the Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘With the intensification of global climate change,carbon neutrality has become a crucial objective for achieving sustainable development,which critically requires systematic technological innovation and collaborative cooperation between technologies and countries.Through categorization and comprehensive technological assessments,a thorough examination of relevant technologies can furnish a framework to guide emission reduction efforts across various sectors.This review seeks to explore the methods by which various countries achieve carbon neutrality technology systems and pathways,with an in-depth study of the differences between the technological approaches and systems in China,the United States,and European countries.The construction of technology systems in several countries is reviewed,from the composition of the systems to the assessment of technologies that include indicators such as carbon reduction potential.Building upon an analysis of key technological pathways in renewable energy,carbon capture,utilization and storage,energy efficiency improvement,and hydrogen energy across different countries,a systematic evaluation is conducted from three key dimensions-policy formulation,resource endowment,and industrial foundation-to identify the similarities,differences,and driving factors in the construction of carbon neutrality technology systems among nations.Based on the previous work,we conducted a comparative analysis and summary of carbon neutrality pathways across various countries worldwide,systematically reviewing and evaluating carbon neutrality technologies in power generation,industry,transportation,and building sectors.Building upon these findings,the study offers recommendations for coupling diverse technological approaches and for international cooperation.By comparing international experiences and practices,this study provides operational references for countries in formulating technology planning and emission reduction strategies,and also provides an important basis for deepening global carbon neutral cooperation in the future.
基金supported by the National Natural Science Foundation of China(Grant No.31988102)。
文摘Wetland ecosystems have become one of the long-term solutions for mitigating global climate change due to their strong carbon sequestration potential.However,the key carbon cycle processes in wetland ecosystems still lack a systematic summary.In the context of wetland protection and restoration,there is still a lack of consensus on the technical pathways to realize carbon sink multiplication in wetland ecosystems.In this paper,the key processes of carbon cycle,such as photosynthetic carbon uptake,microbial carbon decomposition and carbon deposition and burial,are sorted out and summarized in four major wetland types,namely,swamp and peat wetlands,river and riparian wetlands,lake and lakeshore wetlands,and estuarine and coastal wetlands.Based on the key processes of carbon cycle,three technological pathways for carbon sink multiplication are proposed,including,vegetation carbon sequestration and sink enhancement technology,soil carbon emission reduction technology and carbon deposition and burial technology.The key technologies under each pathway are further refined.And the carbon sink effects of the carbon sink technologies in different wetland types are qualitatively described.Also,wetland protection and restoration methods in corresponding regions are given in the light of the regional characteristics of wetlands in China.This will provide a scientific basis for the strategy of doubling the carbon sinks of China′s wetland ecosystems.