期刊文献+
共找到7,924篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
1
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 Deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
在线阅读 下载PDF
An in-Pixel Histogramming TDC Based on Octonary Search and 4-Tap Phase Detection for SPAD-Based Flash LiDAR Sensor
2
作者 HE Wenjie NIE Kaiming WU Haoran 《传感技术学报》 北大核心 2025年第9期1547-1558,共12页
An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste... An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range. 展开更多
关键词 LiDAR sensor histogramming time-to-digital converter hybrid time of flight octonary search 4-tap phase detection
在线阅读 下载PDF
Applying deep learning to teleseismic phase detection and picking:PcP and PKiKP cases
3
作者 Congcong Yuan Jie Zhang 《Artificial Intelligence in Geosciences》 2025年第1期25-32,共8页
The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking ... The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis. 展开更多
关键词 Earth’s interior Teleseismic phases phase detection phase picking Deep learning
在线阅读 下载PDF
Intelligent sitting postural anomaly detection system for wheelchair users with unsupervised techniques
4
作者 Patrick Vermander Aitziber Mancisidor +2 位作者 Raffaele Gravina Itziar Cabanes Giancarlo Fortino 《Digital Communications and Networks》 2025年第3期622-633,共12页
Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,... Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects. 展开更多
关键词 Sitting posture monitoring Anomaly detection Assistive technology Pressure sensors Unsupervised techniques INDIVIDUALIZATION WHEELCHAIR
在线阅读 下载PDF
Advanced Techniques for Dynamic Malware Detection and Classification in Digital Security Using Deep Learning
5
作者 Taher Alzahrani 《Computers, Materials & Continua》 2025年第6期4575-4606,共32页
The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizatio... The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness. 展开更多
关键词 Machine learning EffiicientNet B0 malimg dataset XceptionNet malware detection deep learning techniques support vector machines(SVM)
在线阅读 下载PDF
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
6
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
在线阅读 下载PDF
Contour Detection Algorithm forαPhase Structure of TB6 Titanium Alloy fused with Multi-Scale Fretting Features
7
作者 Fei He Yan Dou +1 位作者 Xiaoying Zhang Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期499-509,共11页
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate... Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy. 展开更多
关键词 TB6 titanium alloyαphase Multi-scale fretting features Contour detection
在线阅读 下载PDF
Research Progress on Detection Techniques of Fungicide Residues in Chinese Chives
8
作者 Xiuying CHEN Zhe MENG +5 位作者 Chen DING Huihui LIU Yancheng ZHOU Jinlu LI Yanhua YAN Lei WANG 《Agricultural Biotechnology》 2024年第1期43-48,共6页
Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized... Chinese chive is a kind of medicinal and edible plant,with many diseases,and chemical fungicides are usually used for control.In order to find out the risk of pesticide residues in Chinese chives,this paper summarized relevant literatures published in recent years,and sorted out and analyzed the types of pesticides used and detection techniques of common diseases in Chinese chives. 展开更多
关键词 Chinese chive Pesticide residues FUNGICIDE detection technique
在线阅读 下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
9
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
在线阅读 下载PDF
ML and DL-based Phishing Website Detection:The Effects of Varied Size Datasets and Informative Feature Selection Techniques
10
作者 Kibreab Adane Berhanu Beyene Mohammed Abebe 《Journal of Artificial Intelligence and Technology》 2024年第1期18-30,共13页
Onemust interact with a specific webpage or website in order to use the Internet for communication,teamwork,and other productive activities.However,because phishing websites look benign and not all website visitors ha... Onemust interact with a specific webpage or website in order to use the Internet for communication,teamwork,and other productive activities.However,because phishing websites look benign and not all website visitors have the same knowledge and skills to inspect the trustworthiness of visited websites,they are tricked into disclosing sensitive information and making them vulnerable to malicious software attacks like ransomware.It is impossible to stop attackers fromcreating phishingwebsites,which is one of the core challenges in combating them.However,this threat can be alleviated by detecting a specific website as phishing and alerting online users to take the necessary precautions before handing over sensitive information.In this study,five machine learning(ML)and DL algorithms—cat-boost(CATB),gradient boost(GB),random forest(RF),multilayer perceptron(MLP),and deep neural network(DNN)—were tested with three different reputable datasets and two useful feature selection techniques,to assess the scalability and consistency of each classifier’s performance on varied dataset sizes.The experimental findings reveal that the CATB classifier achieved the best accuracy across all datasets(DS-1,DS-2,and DS-3)with respective values of 97.9%,95.73%,and 98.83%.The GB classifier achieved the second-best accuracy across all datasets(DS-1,DS-2,and DS-3)with respective values of 97.16%,95.18%,and 98.58%.MLP achieved the best computational time across all datasets(DS-1,DS-2,and DS-3)with respective values of 2,7,and 3 seconds despite scoring the lowest accuracy across all datasets. 展开更多
关键词 ANOVA-F-test deep learning feature selection technique machine learning mutual information phishing website datasets phishing website detection
在线阅读 下载PDF
Signal processing and machine learning techniques in DC microgrids:a review
11
作者 Kanche Anjaiah Jonnalagadda Divya +1 位作者 Eluri N.V.D.V.Prasad Renu Sharma 《Global Energy Interconnection》 2025年第4期598-624,共27页
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin... Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids. 展开更多
关键词 DC microgrids Mathematical approach Signal processing technique Machine learning technique Hybrid model detection
在线阅读 下载PDF
A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision
12
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 Sadique Ahmad Naveed Ahmad Muhammad Shahid Anwar Alpamis Kutlimuratov 《Computers, Materials & Continua》 2025年第7期1-24,共24页
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi... Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research. 展开更多
关键词 Face recognition algorithms face detection techniques face recognition/detection datasets
在线阅读 下载PDF
Enhanced BDS four-frequency cycle slip detection and repair using fuzzy clustering analysis
13
作者 Jinfeng Yuan Xiaoning Su Yuzhao Li 《Geodesy and Geodynamics》 2025年第4期439-453,共15页
Cycle slip detection and repair is one of the key technologies for GNSS high-precision positioning.We introduce an enhanced methodology for detecting and repairing BDS four-frequency cycle slips,utilizing fuzzy cluste... Cycle slip detection and repair is one of the key technologies for GNSS high-precision positioning.We introduce an enhanced methodology for detecting and repairing BDS four-frequency cycle slips,utilizing fuzzy clustering analysis.Firstly,based on fuzzy clustering analysis,the optimal combinations for the BDS four-frequency,including extra-wide lane(EWL),wide lane(WL),and narrow lane(NL),were selected.Secondly,the feasibility of this method was verified using actual static and dynamic observation data,and different types of cycle slips were simulated for further validation.Meanwhile,the proposed method was compared with the classical Turbo-Edit method through experiments.Finally,cycle slips were repaired using the least squares method.According to the experimental results,the optimal geometry-free phase combinations(-2,2,1,-1),(1,-1,1,-1),(3,2,-2,-3),and the pseudo-range phase combination(-1,1,1,-1),selected based on fuzzy clustering analysis,were used for cycle slip detection.The proposed method accurately detected small,large,and specific cycle slips simulated in the actual data.Compared with the Turbo-Edit method,the proposed methodwas able to detect specific cycle slips that Turbo-Edit could not.It is worth noting that during the repair process,the coefficients of the combined observation values are integers,preserving the integer cycle characteristic of the observation values,which allows cycle slips to be fixed directly,eliminating the need for complex searching procedures.Consequently,by enhancing the precision and reliability of the detection of BDS four-frequency cycle slips,our proposed method provides the support for the high-precision localization of BDS multi-frequency observations. 展开更多
关键词 BDS four-frequency Cycle slip detection and repair Fuzzy clustering analysis Geometry-free phase combinations Pseudo-range phase combination
原文传递
Nondestructive detection of atom counts in laser-trapped ^(171)Yb atoms
14
作者 Congcong Tian Qiang Zhu +4 位作者 Bing Wang Dezhi Xiong Zhuanxian Xiong Lingxiang He Baolong Lyu 《Chinese Physics B》 2025年第2期223-228,共6页
We present the experimental demonstration of nondestructive detection of ^(171)Yb atoms in a magneto-optical trap(MOT) based on phase shift measurement induced by the atoms on a weak off-resonant laser beam. After loa... We present the experimental demonstration of nondestructive detection of ^(171)Yb atoms in a magneto-optical trap(MOT) based on phase shift measurement induced by the atoms on a weak off-resonant laser beam. After loading a green MOT of ^(171)Yb atoms, the phase shift is obtained with a two-color Mach–Zehnder interferometer by means of ±45 MHz detuning with respect to the ^(1)S_(0)–^(1)P_(1) transition. We measured a phase shift of about 100 mrad corresponding to an atom count of around 5 × 10^(5). This demonstrates that it is possible to obtain the number of atoms without direct destructive measurement compared with the absorption imaging method. This scheme could be an important approach towards a high-precision lattice clock for clock operation through suppression of the impact of the Dick effect. 展开更多
关键词 ytterbium atoms Mach–Zehnder interferometer nondestructive detection phase shift
原文传递
Advancing antibiotic detection and degradation:recent innovations in graphitic carbon nitride(g-C_(3)N_(4))applications
15
作者 Rui Liu Chaojun Zhang +4 位作者 Rijia Liu Yuan Sun Binqiao Ren Yuhang Tong Yu Tao 《Journal of Environmental Sciences》 2025年第4期657-675,共19页
The uncontrolled release of antibiotics into the environment would be extremely harmful to human health and ecosystems.Therefore,it is in urgent need to monitor the environment and promote the detection and degradatio... The uncontrolled release of antibiotics into the environment would be extremely harmful to human health and ecosystems.Therefore,it is in urgent need to monitor the environment and promote the detection and degradation of antibiotics to the relatively harmless by-products to a feasible extent.Graphitic carbon nitride(g-C_(3)N_(4))is a non-metallic n-type semiconductor that can be used for the antibiotic detection and degradation due to its easy synthesis process,excellent chemical stability and unique optical properties.Unfortunately,the utilization of visible light,electron-hole recombination and electron conductivity have hindered its potential applications in the fields of photocatalytic degradation and electrochemical detection.Although previous publications have highlighted the diverse modification methods for the g-C_(3)N_(4)-based materials,the underlying structure-performance relationships of g-C_(3)N_(4),especially for the detection and degradation of antibiotics,remains to be further explored.In view of this,the current review centered on the recent progress in the modification techniques of g-C_(3)N_(4),the detection and degradation of antibiotics using the g-C_(3)N_(4)-based materials,as well as the potential antibiotic degradation mechanisms of the g-C_(3)N_(4)-based materials.Additionally,the underlying applications of the g-C_(3)N_(4)-based materials for antibiotic detection and degradation were also prospected.This review would provide a valuable research foundation and the up-to-date information for the g-C_(3)N_(4)-based materials to combat antibiotic pollution in the environment. 展开更多
关键词 g-C_(3)N_(4) ANTIBIOTICS Modification techniques Photocatalytic degradation Electrochemical detection
原文传递
A Hybrid Feature Selection Method for Advanced Persistent Threat Detection
16
作者 Adam Khalid Anazida Zainal +2 位作者 Fuad A.Ghaleb Bander Ali Saleh Al-rimy Yussuf Ahmed 《Computers, Materials & Continua》 2025年第9期5665-5691,共27页
Advanced Persistent Threats(APTs)represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour,long-term persistence,and ability to bypass traditional detection ... Advanced Persistent Threats(APTs)represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour,long-term persistence,and ability to bypass traditional detection systems.The complexity of real-world network data poses significant challenges in detection.Machine learning models have shown promise in detecting APTs;however,their performance often suffers when trained on large datasets with redundant or irrelevant features.This study presents a novel,hybrid feature selection method designed to improve APT detection by reducing dimensionality while preserving the informative characteristics of the data.It combines Mutual Information(MI),Symmetric Uncertainty(SU)and Minimum Redundancy Maximum Relevance(mRMR)to enhance feature selection.MI and SU assess feature relevance,while mRMR maximises relevance and minimises redundancy,ensuring that the most impactful features are prioritised.This method addresses redundancy among selected features,improving the overall efficiency and effectiveness of the detection model.Experiments on a real-world APT datasets were conducted to evaluate the proposed method.Multiple classifiers including,Random Forest,Support Vector Machine(SVM),Gradient Boosting,and Neural Networks were used to assess classification performance.The results demonstrate that the proposed feature selection method significantly enhances detection accuracy compared to baseline models trained on the full feature set.The Random Forest algorithm achieved the highest performance,with near-perfect accuracy,precision,recall,and F1 scores(99.97%).The proposed adaptive thresholding algorithm within the selection method allows each classifier to benefit from a reduced and optimised feature space,resulting in improved training and predictive performance.This research offers a scalable and classifier-agnostic solution for dimensionality reduction in cybersecurity applications. 展开更多
关键词 Advanced persistent threats hybrid-based techniques feature selection data processing symmetric uncertainty mutual information minimum redundancy APT detection
在线阅读 下载PDF
Phase diagram as a lens for unveiling thermodynamics trends in lithium-sulfur batteries
17
作者 Bo-Bo Zou Hong-Jie Peng 《Chinese Chemical Letters》 2025年第7期8-9,共2页
Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulf... Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4]. 展开更多
关键词 generation multiple electrochemical conversion reaction electrochemical conversion THERMODYNAMICS mechanistic investigations phase diagram lithium sulfur batteries spectroscopic techniques
原文传递
Development and application of a nitrogen oxides analyzer based on the cavity attenuated phase shift technique
18
作者 Jun Zhou Wenjie Wang +5 位作者 Yanfeng Wu Chunsheng Zhang Aiming Liu Yixin Hao Xiao-Bing Li Min Shao 《Journal of Environmental Sciences》 2025年第4期692-703,共12页
Nitrogen oxides(NO_(x))are crucial in tropospheric photochemical ozone(O_(3))production and oxidation capacity.Currently,the widely used NO_(x)measurement technique is chemiluminescence(CL)(CL-NO_(x)),which tends to o... Nitrogen oxides(NO_(x))are crucial in tropospheric photochemical ozone(O_(3))production and oxidation capacity.Currently,the widely used NO_(x)measurement technique is chemiluminescence(CL)(CL-NO_(x)),which tends to overestimate NO_(2)due to atmospheric oxidation products of NO_(x)(i.e.,NO_(z)).We developed and characterized a NO_(x)measurement system using the cavity attenuated phase shift(CAPS)technique(CAPS-NO_(x)),which is free from interferences with nitrogen-containing species.The NO_(x)measured by the CAPS-NO_(x)and CL-NO_(x)analyzers were compared.Results show that both analyzers showed consistent measurement results for NO,but the NO_(2)measured by the CAPS-NO_(x)analyzer(NO_(2)_CAPS)was mostly lower than that measured by the CL-NO_(x)analyzer(NO_(2)_CL),which led to the deviations in O_(3)formation sensitivity regime and O_(x)(=O_(3)+NO_(2))sources(i.e.,regional background and photochemically produced O_(x))determined by the ozone production efficiencies(OPE)calculated from NO_(2)_CL and NO_(2)_CAPS.Overall,OPE_CL exceeded OPE_CAPS by 18.9%,which shifted 3 out of 13 observation days from the VOCs-limited to the transition regime when judging using OPE_CL,as compared to calculations using OPE_CAPS.During the observation period,days dominated by regional background O_(x)accounted for 46%and 62%when determined using NO_(2)_CL and NO_(2)_CAPS,respectively.These findings suggest that the use of the CL-NO_(x)analyzer tends to underestimate both the VOCs-limited regime and the regional background O_(x)dominated days.The newly built CAPS-NO_(x)analyzer here can promote the accurate measurement of NO_(2),which is meaningful for diagnosing O_(3)formation regimes and O_(x)sources. 展开更多
关键词 Nitrogen oxides measurement Cavity attenuated phase shift (CAPS)technique Instrument development O_(3)formation regime O_(x)source
原文传递
Fabric Defect Detection Using Independent Component Analysis and Phase Congruency 被引量:7
19
作者 LENG Qiujun ZHANG Hu +1 位作者 FAN Cien DENG Dexiang 《Wuhan University Journal of Natural Sciences》 CAS 2014年第4期328-334,共7页
A novel method based on independent component analysis and phase congruency is proposed for detecting defects in textile fabric images. By independent component, we can obtain textile structural features of fabric-fre... A novel method based on independent component analysis and phase congruency is proposed for detecting defects in textile fabric images. By independent component, we can obtain textile structural features of fabric-free images. By phase congru- ency, structure information is reduced, which can distinguish the defect region from the defect-free regions. Finally, we have the detecting result from binary image which is obtained by a thresh- old step, Compared with other algorithms, the proposed method not only has robustness with high detection rate, but also detects various types of defects quite well. 展开更多
关键词 fabric defect detection independent componentanalysis phase congruency morphological filter
原文传递
Research of the Phase Sensitive Detection Property of Magnetic Sensor Based on Hall Effect
20
作者 陈金岳 周立伟 +1 位作者 丁守谦 李文深 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期32-38,共7页
Aim to detect the characteristic weak magnetic field signal against the strong noises background. Methods In combination with a low-pass-filter, the correlation output of magne-* tic sensors between the magnetic field... Aim to detect the characteristic weak magnetic field signal against the strong noises background. Methods In combination with a low-pass-filter, the correlation output of magne-* tic sensors between the magnetic field and reference current was utilized to provide a DC output voltage proportional to the applied magnetic induction, computer simulation was* done to investigate the correlation output of the Hall-effect sensors. Results Some analysis results concerning the noise property, harmonic supppression and the sensitivity were given. Conclsion The minimum detection signal of the equipment evolved from the mentioned cor-* relation theory can be 10-6 T. In addition to the DC output, such sensors can also measure the phase of the detected magnetic induction and has good harmonic suppression as well as* noise elimination. 展开更多
关键词 CORRELATION Hall magnetic sensor phase sensitive detection*
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部