This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert ...This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Man...Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Many real-world applications rely on image captioning,such as helping people with visual impairments to see their surroundings.To formulate a coherent and relevant textual description,computer vision techniques are utilized to comprehend the visual content within an image,followed by natural language processing methods.Numerous approaches and models have been developed to deal with this multifaceted problem.Several models prove to be stateof-the-art solutions in this field.This work offers an exclusive perspective emphasizing the most critical strategies and techniques for enhancing image caption generation.Rather than reviewing all previous image captioning work,we analyze various techniques that significantly improve image caption generation and achieve significant performance improvements,including encompassing image captioning with visual attention methods,exploring semantic information types in captions,and employing multi-caption generation techniques.Further,advancements such as neural architecture search,few-shot learning,multi-phase learning,and cross-modal embedding within image caption networks are examined for their transformative effects.The comprehensive quantitative analysis conducted in this study identifies cutting-edgemethodologies and sheds light on their profound impact,driving forward the forefront of image captioning technology.展开更多
Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert p...Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin...Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.展开更多
Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information...Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information.This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques.Although image processing is a powerful tool for revealing the more subtle data“hidden”in a picture,it is not a commonly employed method in geoscientific microstructural analysis.Here,we briefly introduce the general principles of image processing,and further discuss its application in studying rock microstructures using BSE-SEM image data.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into ...Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.展开更多
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis...In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.展开更多
The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatia...The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.展开更多
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for th...The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The ...Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.展开更多
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde...The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.展开更多
Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method...Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.展开更多
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t...Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.展开更多
Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image qual...Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.展开更多
基金supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific FacilityChinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciences+9 种基金the supports from the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB0550000the National Natural Science Foundation of China(NSFC,grant Nos.12422303 and12261141690)the supports from the NSFC(grant No.12403024)supports from the NSFC through grant Nos.11988101 and 11933004the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)supports from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
基金supported by the National Natural Science Foundation of China(Nos.U22A2034,62177047)High Caliber Foreign Experts Introduction Plan funded by MOST,and Central South University Research Programme of Advanced Interdisciplinary Studies(No.2023QYJC020).
文摘Image captioning has seen significant research efforts over the last decade.The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.Many real-world applications rely on image captioning,such as helping people with visual impairments to see their surroundings.To formulate a coherent and relevant textual description,computer vision techniques are utilized to comprehend the visual content within an image,followed by natural language processing methods.Numerous approaches and models have been developed to deal with this multifaceted problem.Several models prove to be stateof-the-art solutions in this field.This work offers an exclusive perspective emphasizing the most critical strategies and techniques for enhancing image caption generation.Rather than reviewing all previous image captioning work,we analyze various techniques that significantly improve image caption generation and achieve significant performance improvements,including encompassing image captioning with visual attention methods,exploring semantic information types in captions,and employing multi-caption generation techniques.Further,advancements such as neural architecture search,few-shot learning,multi-phase learning,and cross-modal embedding within image caption networks are examined for their transformative effects.The comprehensive quantitative analysis conducted in this study identifies cutting-edgemethodologies and sheds light on their profound impact,driving forward the forefront of image captioning technology.
基金supported by the Science Committee of the Ministry of Higher Education and Science of the Republic of Kazakhstan within the framework of grant AP23489899“Applying Deep Learning and Neuroimaging Methods for Brain Stroke Diagnosis”.
文摘Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
文摘Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.
基金funded by the National Natural Science Foundation(No.42261134535)the National Key Research and Development Program(No.2023YFE0125000)+2 种基金the Frontiers Science Center for Deep-time Digital Earth(No.2652023001)the 111 Project of the Ministry of Science and Technology(No.BP0719021)supported by the department of Geology,University of Vienna(No.FA536901)。
文摘Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information.This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques.Although image processing is a powerful tool for revealing the more subtle data“hidden”in a picture,it is not a commonly employed method in geoscientific microstructural analysis.Here,we briefly introduce the general principles of image processing,and further discuss its application in studying rock microstructures using BSE-SEM image data.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
基金This research was funded by the Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)under the Grand Number FRGS/1/2020/ICT01/UK M/02/4,and University Kebangsaan Malaysia for open access publication.
文摘Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.
基金Scientific Research Deanship has funded this project at the University of Ha’il–Saudi Arabia Ha’il–Saudi Arabia through project number RG-21104.
文摘In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.12233012,the Strategic Priority Research Program of the Chinese Academy of Sciences,grant No.XDB0560102the National Key R&D Program of China 2022YFF0503003(2022YFF0503000)。
文摘The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.
文摘The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.
文摘The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.
基金supported by the National Key R&D Program of China 2022YFF0503002the National Natural Science Foundation of China(NSFC,Grant Nos.12333010 and 12233012)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Imaging observations of solar X-ray bursts can reveal details of the energy release process and particle acceleration in flares.Most hard X-ray imagers make use of the modulation-based Fourier transform imaging method,an indirect imaging technique that requires algorithms to reconstruct and optimize images.During the last decade,a variety of algorithms have been developed and improved.However,it is difficult to quantitatively evaluate the image quality of different solutions without a true,reference image of observation.How to choose the values of imaging parameters for these algorithms to get the best performance is also an open question.In this study,we present a detailed test of the characteristics of these algorithms,imaging dynamic range and a crucial parameter for the CLEAN method,clean beam width factor(CBWF).We first used SDO/AIA EUV images to compute DEM maps and calculate thermal X-ray maps.Then these realistic sources and several types of simulated sources are used as the ground truth in the imaging simulations for both RHESSI and ASO-S/HXI.The different solutions are evaluated quantitatively by a number of means.The overall results suggest that EM,PIXON,and CLEAN are exceptional methods for sidelobe elimination,producing images with clear source details.Although MEM_GE,MEM_NJIT,VIS_WV and VIS_CS possess fast imaging processes and generate good images,they too possess associated imperfections unique to each method.The two forward fit algorithms,VF and FF,perform differently,and VF appears to be more robust and useful.We also demonstrated the imaging capability of HXI and available HXI algorithms.Furthermore,the effect of CBWF on image quality was investigated,and the optimal settings for both RHESSI and HXI were proposed.
文摘Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.
基金supported by the National Natural Science Foundation of China(NSFC)12333010the National Key R&D Program of China 2022YFF0503002+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0560000)the NSFC 11921003supported by the Prominent Postdoctoral Project of Jiangsu Province(2023ZB304)supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences,grant No.XDA15320000.
文摘Indirect X-ray modulation imaging has been adopted in a number of solar missions and provided reconstructed X-ray images of solar flares that are of great scientific importance.However,the assessment of the image quality of the reconstruction is still difficult,which is particularly useful for scheme design of X-ray imaging systems,testing and improvement of imaging algorithms,and scientific research of X-ray sources.Currently,there is no specified method to quantitatively evaluate the quality of X-ray image reconstruction and the point-spread function(PSF)of an X-ray imager.In this paper,we propose percentage proximity degree(PPD)by considering the imaging characteristics of X-ray image reconstruction and in particular,sidelobes and their effects on imaging quality.After testing a variety of imaging quality assessments in six aspects,we utilized the technique for order preference by similarity to ideal solution to the indices that meet the requirements.Then we develop the final quality index for X-ray image reconstruction,QuIX,which consists of the selected indices and the new PPD.QuIX performs well in a series of tests,including assessment of instrument PSF and simulation tests under different grid configurations,as well as imaging tests with RHESSI data.It is also a useful tool for testing of imaging algorithms,and determination of imaging parameters for both RHESSI and ASO-S/Hard X-ray Imager,such as field of view,beam width factor,and detector selection.